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Summary The asymptotic and transient stability of single-file trains of fluid-filled elastic capsules flowing in narrow channels is analyzed as
a model for the lines of red blood cells commonly observed in small tubes or vessels. The most amplified disturbances in larger channels are
found to have a rich variety of characteristics depending upon the details of the particular configuration. Transient growth mechanisms are
found to be significant, even for relatively small perturbations, and are shown to precipitate nonlinear saturation and chaotic flow many times
more quickly than the t → ∞ asymptotic stability would predict even for nominally small perturbations.

INTRODUCTION

Red blood cells or similar elastic capsules in sufficiently small vessels or tubes are well-known to flow in a regular single-file
formation down the center of the vessel. In wider tubes or vessels, seemingly chaotic flow is observed (e.g. figure 1), presumably
because such capsule trains are unstable. The source of this instability is unclear yet fundamentally important, particularly how
it might be affected by geometric and capsule mechanical properties to avoid line disruption in microfluidic devices to process
blood. We consider the character of the most amplifying perturbations that might lead to chaotic flow.

The model system we analyze is a two-dimensional flow of capsules, which empirically displays both stable and chaotic
behaviors. We assume that the transition between these regimes arises due to the growth of small perturbations via linear
mechanisms. There is no expectation that linearization of this coupled fluid–structure system leads to a diagonalizable system,
so we also consider transient linear amplification of disturbances in addition to the eigensystem that governs long-time linear
amplification. These methods,1 as well as the transient non-modal behavior they expose, have been used to study, for example,
boundary layer stability. Here they are adapted to the complete fluid–structure coupled flow in the viscous limit. Direct
numerical simulations for specific cases confirm both the predicted transient and asymptotic amplification rates, and are used
to track the subsequent nonlinear evolution of the system to a chaotic behavior. Of particular interest are the most amplified
disturbances and what perturbation amplitudes are needed for transient disturbances to achieve nonlinear saturation significantly
before corresponding eigenmodes might lead to finite-amplitude effects at long times, as they must if any eigenvalues are
amplifying.

METHODS

The cells are modeled as finite-deformation elastic shells, each containing a Newtonian fluid of area πr2o , which for this
study matches that of the suspending fluid.2, 3 A boundary integral method4 is used to evaluate their surface velocities u, which
are nonlinear functions of cell surface positions x due to geometric factors. The full nonlinear system evolves as

dx

dt
= u(x). (1)

From this numerical model, with M spectral collocation points ~x representing the cell surfaces, a perturbation method is used
to construct the 2M × 2M matrix A that governs the temporal behavior of perturbations ~ε to ~x:

d~ε

dt
= A~ε. (2)

Figure 1: Simulation results for cell shapes and locations for a stable case (left) and an unstable case (right).
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To assess the linear evolution of perturbations governed by (2), we consider both the t → ∞ behavior, dictated by its
eigenvalue with the largest positive real component α = Re(λα) with corresponding eigenvector ~sα, and transient growth,
which corresponds to the maximum singular value of the singular-value decomposition of expAt. The t → 0+ transient
growth rate is η, with corresponding singular vector ~vη . These perturbations, amplification rates, and subsequent transition to
nonlinear chaotic motion are considered.

RESULTS

Figure 2 (a) shows the disturbance growth in time for five different initial perturbations for flow of 20 cells in W = 10ro
wide streamwise-periodic channel. The initial disturbances are determined by the linear analysis of A as outlined and their
evolution is computed by direct numerical solution of (1). For initial perturbation amplitudes ε̂ = 0.001ro, the initial transient
linear growth rate η is significantly faster than the long-time eigenvalue-based growth rate α. (Direct simulations with small-
amplitude initial conditions verify the numerical procedures in the linear limit.) However, for this small initial perturbation, the
cumulative amplification of this transiently amplified disturbance is insufficient to lead to significant nonlinear behavior before
the eigenvector growth dominates behavior at later times. Increasing the initial perturbation to a still small value of ε̂ = 0.01ro
allows the transient amplification to saturate nonlinearly and develop rapidly to a chaotic flow (see figures 2 b to h). This occurs
about 100 times faster than growth at the asymptotically most amplified rate. An ad hoc disturbance for the same amplitude,
formed by randomly perturbing cell centroids by the same ε̂ is less amplified still.
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Figure 2: (a) Amplification 5 different initial perturbations for a channel with packing Nro/L = 0.7 and width W = 40ro: — most amplified t → 0+

disturbance for ε̂ = 0.001, — most amplified t → ∞ for ε̂ = 0.001; — most amplified t → 0+ for ε̂ = 0.01; — most amplified t → ∞ for with ε̂ = 0.01;
and — ad hoc disturbance ε̂ = 0.01. (b) Visualization of the base flow state. (c–h) Evolution of the most unstable eigenvector perturbation to a chaotic flow
condition.

The most amplified transient and eigenvector disturbances change qualitatively for different configurations, showing
longitudinal displacements, rotations, transverse displacements, and symmetric and asymmetric distortions of the membranes.
The corresponding eigenvectors (not shown) are typically different in character from the most amplified transient disturbances.
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