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Developing a consistent solution method for discontinuous adjoint flow problems
is challenging. The inviscid Burgers’ equation is considered as a step toward
the formulation of such a method. Results are shown for linear and nonlinear
numerical methods, including WENO shock capturing. Necessary and sufficient
conditions for consistent and convergent solutions to the associated adjoint
equation are discussed. The adjoint Euler equations are also investigated, for
which no numerical schemes are provably convergent. A characteristic-based
method for this problem is proposed. It transforms the adjoint equations into an
uncoupled set of transport equations. These equations have the same form as the
adjoint Burgers’ equation, and thus inherit their proven consistency properties.
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1 Introduction

1.1 Adjoint techniques

Adjoint methods determine the local sensitivity of an equations to its variables. They significantly
reduce the complexity of optimization by deriving adjoint equations through partial-differential-
equation-based constraints associated with the governing equations. This bypasses direct differen-
tiation of the governing equations. Adjoint methods have been used for flow sensitivity analysis
and design optimization for a long time, though typically for smooth flow variables. Flows with
discontinuities like shocks, boundary layers, or reactive zones pose problems for adjoint methods.
These problems are generally associated with differentiability at the discontinuity.

1.2 Flows with shocks

Hyperbolic conservation laws take the form

∂u

∂t
+∇ · f(u) = 0. (1)

Such equations can form discontinuities for even smooth initial data. Herein, two conservation laws
with this property are considered, the inviscid Burgers’ equation:

∂u

∂t
+

1

2

∂u2

∂x
= 0, (2)

and the one-dimensional compressible Euler equations:

∂u

∂t
+
∂f(u)

∂x
= 0. (3)

Shock fitting or shock capturing are usually used to solve the associated forward equations.

1.2.1 Shock fitting

Shock fitting methods explicitly introduce the shock into the solution via a Rankine–Hugoniot
relation. The shock locations are an independent variable appended to the existing set of equations
and treated as a surface of discontinuity. Perturbations of a discontinuous function produce a delta
function, and all formulations based on variations of smooth functions (e.g. Taylor series) must
be modified. This information can also be used in specialized descent algorithms. Unfortunately,
this procedure is not practical for complex multidimensional flow problems (Matsuzawa and Hafez,
1997).

1.2.2 Shock capturing

Shock capturing methods express the governing equations in conservation form and evolve the
discontinuities as part of the solution (in terms of a flux). No special methods are used to identify
shocks. Instead, shock capturing methods attempt to damp spurious oscillations near large jumps
in the solution. The most common such methods are embedded in a finite volume framework, which
discretely conserves the state variables.
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1.3 Adjoint solutions for flows with shocks

Adjoint equations are adjoint to the equations obtained by linearizing the nonlinear flow equations.
However, linearizing about a shock is ill-posed without additional information (e.g. a Rankine–
Hugoniot relation). Shock fitting methods can do this directly, though the procedure is not always
trivial. Shock capturing methods do not entail a separate equation for the shock surface, so it is
unclear how to impose an additional constraint.

1.3.1 Convergence via shock smearing

Giles and Ulbrich (2010a) showed that a modified Lax–Friedrichs scheme, which artificially adds
dissipation as the grid is refined, is convergent and consistent for the linearized and adjoint Burgers’
equation. They also asserted that artificial dissipation is required for convergence generally (Giles,
2002; Giles and Ulbrich, 2010a,b). Such dissipation could ensure that the shock is smeared across
an increasing number of grid points as the grid is refined. Thus, the numerical method implicitly
satisfies the adjoint interior boundary conditions at the shock location. For example, Giles and
Ulbrich (2010a) showed that applying a modified Lax–Friedrichs scheme to Burgers’ equation
can converge to incorrect solutions if the dissipation decreases too slowly (or quickly) with grid
refinement:

fi+1/2 =
1

2
(fi+1 + fi)− µ(ui+1 − ui) where µ = ∆xα−1, α ∈ (2/3, 1). (4)

Using the discrete linearized and adjoint schemes ensures that the conservative linearized equa-
tions are discretized by a conservative scheme and the nonconservative adjoint equations by a
nonconservative scheme.

Note that the shock is smeared at multiple points: in the forward and reverse governing equations
as a part of the numerical method, in evaluation of the cost function, in the updating of design
variables, and in updating the spatial grid, if necessary, at each design iteration. It can be shown
that this smearing is sometimes equivalent to modifying the cost function, and for transonic flows
with weak shocks acceptable results can be obtained, as have been in the past. This is also true for
optimization of integral quantities, such as lift and drag, as it has been argued that the “viscous”
shock profile remains invariant, to leading order, as the shock oscillates, and the linearized shock
motion remains correct.

1.3.2 Nonlinear flux-limited schemes

The proof of Giles and Ulbrich (2010a) is difficult to extend to more nonlinear numerical schemes.
For example, flux limited schemes, such as MUSCL and WENO, are not proven to converge to the
correct adjoint solution. This is because one of the main requirements in convergence proofs for
nonlinear conservation laws with shocks is Oleinik’s One-Sided Lipschitz Condition (OSLC):

u(x, t)− u(y, t)

x− y ≤ 1

t

and its discrete equivalent. The only flux limiter that has been proven to satisfy the OSLC is the
maxmod limiter. Intrinsically nonlinear schemes do not involve artificial dissipation in the same way
as an entropy solution and, as such, do not necessarily satisfy the OSLC. While these schemes can be
modified in such a way that they satisfy the OSCL, this makes the limiter itself overly complicated
(both in implementation and overhead cost), and thus are not practical. While there are no formal

3



convergence proofs, (Messyahu et al., 1994) suggests that TVD MUSCL schemes are bounded in
Lip+, where:

‖w(x)‖Lip+ ≡ ess sup
x 6=y

(
w(x)− w(y)

x− y

)+

, (·)+ ≡ max(·, 0), (5)

and though they are not monotonically decreasing as required by OSLC, they do converge in certain
cases. Note that these cannot converge better than first order when there is a discontinuity inside a
grid cell. When shocks are present, formally second-order schemes are only first order accurate in
Lip′. This can be surpassed by moving the mesh so that no shock occurs in the interior of a grid
cell. Then, a better error estimate will hold, and if the scheme is Lip+-stable, will be second order
accurate:

‖(RA− I)w‖Lip′ = O(∆x3)‖w‖BV (6)

whenever w is C1 in the grid cell interior. Here, R is the reconstruction operator, A is the cell
averaging operator, and BV is the bounded variation space:

Continuously differentiable ⊆ Lipschitz continuous ⊆
absolutely continuous ⊆ bounded variation ⊆

differentiable almost everywhere.

1.3.3 Non-differentiable methods

Non-differentiable optimization methods, such as those using sub-gradients, have also been used.
For example, methods that do not involve gradient information, such as stochastic optimization or
genetic algorithms will converge to the correct sensitivity. However, these methods involve very high
computational costs compared to classical gradient descent methods. Thus, they appear intractable
for large flow simulations.

2 Adjoint formulation

There are two main approaches to forming the adjoint; the differentiate-then-discretize approach,
which derives the continuous adjoint equations analytically from the state equations (e.g. (26))
and then discretizes them, and the discretize-then-differentiate approach, which discretizes the
state equations then derives the discrete adjoint equations based on the discretized operators. The
formulation of the adjoint system is shown first.

2.1 Sensitivity: Burgers’ equation

We write a non-homogeneous (26) as:

N (u, g) = ut + F (u)x − g(x) = 0, (7)

where F (u) = u2/2 is the flux and g(x) is a source term and our parameter of interest. The adjoint
is formed as a constrained optimization problem:

min
u,g
J (u, g) subject to N (u, g) = 0, (8)
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where J is the cost functional and 〈·, ·〉 is an inner product. Following standard practice the L2

inner product is used:

〈x, y〉 =

∫
Ω
xy dΩ. (9)

We assume that the cost functional has a unique minimizer. The constrained optimization problem
is transformed into an unconstrained problem via a Lagrangian functional

L(u, g, p) = J (u, g)− 〈p,N (u, g)〉, (10)

where p is the adjoint variable (or Lagrange multiplier). It is introduced to enforce N (u, g) = 0. We
then seek to minimize L instead, which is satisfied when all the corresponding partial derivatives
simultaneously vanish:

0 =
∂L
∂p

= −N (u, g), (11)

0 =
∂L
∂u

=
∂J
∂u
−
(
∂N
∂u

)†
p, (12)

0 =
∂L
∂g

=
∂J
∂g
−
(
∂N
∂g

)†
p. (13)

Here, (11) is the constraint, (12) is the adjoint system, and (13) determines the optimality condition.
The adjoint of an operator D, denoted by D†, is

〈Dq, q†〉 = 〈q,D†q†〉+ b, (14)

or ∫
Ω

(Dq)q†dx︸ ︷︷ ︸
(a)

=

∫
Ω
q(D†q)dx+ qq†

∣∣∣L
x=0

(15)

where (a) is evaluated and D† and b are inferred by inspection. Traditionally b = 0 is chosen for
simplicity. The sensitivity is given by the chain rule

dJ
dg

=
∂J
∂g

+
∂J
∂u

du

dg
. (16)

Differentiating the constraint N (u, g) = 0 gives

du

dg
=

(
∂N
∂u

)−1 ∂N
∂g

, (17)

and then

dJ
dg

=
∂J
∂g
−
(
∂N
∂g

)†
p. (18)

For our purposes we will the cost functional

J =

∫
Ω

u(x, T )2

2
dx → ∂J

∂u
=

∫
Ω
u(x, T ) dx. (19)
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We also have

∂N
∂g

= 1 and
∂J
∂g

= 0. (20)

Thus, the adjoint system to be solved is (
∂N
∂u

)†
p = 0 (21)

with p(x, T ) = u(x, T ) and the sensitivity is given by

dJ
dg

= −〈1, p〉. (22)

2.2 Differentiate-then-discretize

We primarily focus on the differentiate-then discretize approach, which writes the continuous adjoint
equations per (21) then solves them using separate numerical methods. For (7) we have(

∂N
∂u

)†
= (∂t + u∂x), (23)

which is derived from the definition of the adjoint and integration by parts, where we have taken
b = 0 and thus, for periodic boundaries u(0, t) = u(L, t) the jump must match p(0, t) = p(L, t). The
adjoint system can then by written in continuous form as

pt + upx = 0 (24)

with boundary and initial (final) conditions:

p(0, t) = p(L, t), p(x, T ) = u(x, T ). (25)

This system (24) can be integrated backwards in time, starting from t = T , with whatever numerical
scheme is appropriate. Once p(x, t) is solved, the sensitivity (22) is straightforward.

3 Example problem: Burgers’ equation and shock initial data

3.1 Problem setup

The problem is the inviscid Burgers equation

u(x, t)t +

(
u(x, t)2

2

)
x

= 0, x ∈ Ω; t ∈ [0, T ], (26)

where Ω = [−2, 2] and T = 1, and we use initial condition

(i) u(x, 0) =

{
1.5 for x < 0

−0.5 for x ≥ 0
or (ii) u(x, 0) =

{
0.75 for x < 0

0.25 for x ≥ 0.
(27)
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The exact solution for u(x, t) is advection of the shock at the shock speed, given by the Rankine–
Hugoniot condition as the jump in the flux at the shock:

ẋsJuK = Jf(u)K =
uL + uR

2
= us, (28)

which gives

u(x, t) =

{
uL, x < ust

uR, x > ust
(29)

for both initial conditions.

3.2 Exact adjoint solution

Linear perturbations to the governing equation evolve as

L(u)ũ ≡ ∂ũ

∂t
+

∂

∂x
(aũ) = 0, (30)

where a(u) ≡ f ′(u) = u. The corresponding perturbation to the shock position satisfies the ODE

d

dt
(x̃sJuK) = [(a− ẋs)ũ] . (31)

We can separate the cost functional as

J =

∫
Ω\Γ

G(u(x, T ))dx (32)

where G(u) = u2/2 and Γ is the shock surface. The linear perturbation to the cost functional is

J̃ =

∫
Ω\Γ

G′(u(x, T ))ũ(x, T )dx− x̃s(T )JGK(T ), (33)

=

∫
Ω\Γ

p(x, 0)ũ(x, 0)dx, (34)

where p(x, t) satisfies

pt + upx = 0 for x ∈ Ω\Γ (35)

p(xs(t), t) =
JGK
JuK

(x, T ) for x ∈ Γ. (36)

where the latter is called the interior boundary condition. In this case, the interior boundary condition
for the adjoint equations matches the Rankine–Hugoniot condition for the forward equations at
time T .

The exact forward and adjoint solutions are shown in figure 1. For time t = 0 the exact adjoint
solution is

p(x, 0) =


uL, x < T [(uL + uR)/2− uL] ,

(uL + uR)/2, T [(uL + uR)/2− uL] < x < T [(uL + uR)/2− uR] ,

uR, x > T [(uL + uR)/2− uR] .

(37)
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(a) Forward solution: u(x, t)
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(b) Adjoint solution: p(x, t)

Figure 1: Characteristics for initial condition (i).
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3.3 Results

3.3.1 Discrete-adjoint and upwinding flux

We first use a conservative upwinding scheme in space and forward Euler in time, following (Alauzet
and Pironneau, 2012). For the forward variable this gives

um+1
i − umi

∆t
+ si

umi
2 − umi−1

2

2∆x
+ (1− si+1)

umi+1
2 − umi 2

2∆x
= 0 (38)

for i = 1, . . . , N are the uniformly spaced spatial points of step size ∆x, m = 1, . . . ,M the uniform
time steps of size ∆t, and the CFL number is λ = ∆t/∆x. The si are the upwind indicators, which
have

si = 1 if umi > umi−1, 0 otherwise., (39)

the discrete cost function is

J h = ∆x
N∑
i=1

G(xi, T ), (40)

and the time-consistent discrete adjoint is

pm−1
i − pmi

∆t
+
umi
∆x

[
sip

m
i − si+1p

m
i+1 + (1− si)pmi−1 − (1− si+1)pmi

]
= 0 (41)

with final condition pMi = uMi .
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(a) Adjoint solution
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Figure 2: (a) Adjoint solution and – – – exact solution, (b) shock error for both initial conditions (i) and (ii) and
the upwinding flux scheme. For initial condition (i) no convergence is seen at the shock location for increasing spatial
resolution N . Convergence is clear for initial condition (ii). Both cases have the same shock speed us.

N |εp(xs, 0)| PAS
16 0.021 2
32 0.043 2
64 0.0013 1

128 0.043 2
256 0.0011 2

(a) Initial condition (i)

N |εp(xs, 0)| PAS
16 0.050 6
32 0.021 7
64 0.0056 7

128 0.00042 9
256 0.00013 10

(b) Initial condition (ii)

Table 1: Points across the shock (PAS) for both initial conditions for the upwinding scheme, corresponding to figure 2.
We see that initial condition (i) does not result in increasing PAS with increasing N , whereas (ii) does. This is the
principal difference between the two cases, and corresponds to converging εp.

3.3.2 Continuous adjoint and WENO reconstruction

WENO solutions to the inviscid Burgers’ equation are expressed as

um+1
i = umi +

∆t

∆x
(Fmi+1/2 − Fmi−1/2) (42)
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(b) Varying temporal resolution

Figure 3: Selected errors for the non-converging initial condition (i) for varying (a) ∆x and (b) ∆t with constant
resolutions otherwise. No pattern can be seen, which suggests that the problem cannot be solved by increasing the
simulation resolution in a particular way. In (a) we also show the L1 convergence of the full solution, rather than just
at the shock location; the near-monotonic character of this convergence belies the fact that such a broad measure of
the error is not useful for determining convergence at the shock, which the problem is meant to demonstrate. This is
because the shocks are simultaneously getting sharper.
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(a) Initial condition (i)
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Upsampled Regular

(b) Initial condition (ii)

Figure 4: Shock errors are shown for both initial conditions and upsampled and regular solutions. Upsampled
solutions are computed by taking the regular solution of previous figures and linearly interpolating additional points
onto the forward solution. If the problem is resolution at the shock location (not enough points across the shock),
then this technique can place extra grid points near this location without any expense for the forward problem. In the
case of the upwinding scheme, no such advantage is found using this technique, presumably because it allows more
points across the shock (more precise), but the location is not determined any more accurately.
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j = m+ 1 j = m

Figure 5: Adjoint shock error for the WENO scheme, λ = 0.4, varying N , both initial conditions (i) and (ii), no
artificial viscosity, and both j = m and j = m+ 1. For initial condition (i) no convergence is seen, consistent with the
upwinding scheme. (ii) appears to converge, though not uniformly. This is in contrast to the upwinding scheme that
uniformly converged for this case.

where the numerical fluxes Fmi are computed as

Fmi+1/2 =
1

2
(fmi + fmi+1)− α(umi+1 − umi ). (43)

Here, α is the maximum wave speed α ≡ maxi|f ′(u)|, which gives the global Lax–Friedrichs (GLF)
method. An artificial viscosity ν is sometimes added, and is denoted as appropriate.

N |εp(xs, 0)| Order
16 0.0640 1.49
32 0.0226 2.20
64 0.00492 3.10

128 0.000575 0.80
256 0.000330

(a) λ = 0.1

N |εp(xs, 0)| Order
16 0.0666 1.49
32 0.0236 2.26
64 0.00493 2.80

128 0.000707 0.57
256 0.000475 0.027
512 0.000467

(b) λ = 0.2

Table 2: WENO for initial condition (ii) with artificial viscosity ν = ∆x0.95 and λ as labeled. We see that both cases
uniformly converge to very small errors, which are likely due to the small errors introduced by the WENO scheme
(ε = 10−6).

N |εp(xs, 0)| PAS
16 0.061 2
32 0.028 2
64 0.017 2

128 0.027 2
256 0.019 2

(a) ν = 0

N |εp(xs, 0)| PAS
16 0.0640 6
32 0.0226 8
64 0.00492 12

128 0.000575 16
256 0.000330 18

(b) ν = ∆x0.95

Table 3: WENO for initial condition (ii) with λ = 0.6 and ν as labeled. Uniform convergence is only seen for the
case with finite ν, which corresponds to increasing PAS. This is consistent with our conclusions from the upwinding
scheme for both initial conditions, for which only (ii) resulted in increasing PAS with increasing N .
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Figure 6: Adjoint shock error for upsampling WENO through linear interpolation, per figure 4; artificial viscosity
is νp = ∆x0.95 and M and N are the number of grid points in the adjoint and forward solutions respectively. The
same data are shown in (a) and (b) for constant N and M . We see that controlling for constant M does not result in
smaller errors at the shock, though for constant N (initial number of forward points) it does. This must be weighed in
terms of relative expense of forward and adjoint solutions.

3.4 Discussion

Folowing Giles and Ulbrich (2010a), there appear to be two conditions for convergence of the adjoint
solution:

1. Consistency in numerical smoothing between the forward and adjoint solutions.

2. As the grid resolution improves, the numerical smoothing varies such that the number of
points across the shock increases and the shock decreases simultaneously.

In the case of the modified Lax–Friedrichs flux of Giles and Ulbrich (2010a) (see appendix A
for details), the artificial dissipation is introduced consistently, satisfying condition 1., and has
magnitude of the form ν = ∆xα, where α < 1 ensures condition 2. is satisfied. From previous
sections and other published results, we know that many numerical schemes do not satisfy these
conditions, and thus do not converge upon the proper interior boundary condition (Alauzet and
Pironneau, 2012; Fikl et al., 2016). Condition 2. was violated for initial condition (i) for the
upwinding scheme considered here, but not initial condition (ii); this resulted in an inconsistent
adjoint solution. The WENO solutions violated condition 2. for both initial conditions, and neither
converged without additional dissipation (ν) to reinforce it. This additional dissipation was added
in a way that was consistent for the forward and adjoint equations, hence the fulfillment of condition
1. as well.

3.5 Problems

The conditions of Giles and Ulbrich (2010a) are straightforward to state, though difficult to ensure
a priori, and certainly challenging to prove, for equations more complicated than Burgers’. Further,
Burgers’ equation benefits from being scalar, and so there are no additional flow variables that can
interact. Generally this is not the case for coupled hyperbolic system. More specifically, the artificial
viscosity introduced in the WENO solution was sufficient to ensure both conditions above, though its
unclear what amount of dissipation is required for more complicated systems, given the interactions
present. The compressible inviscid flow equations are considered next as a demonstration of these
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problems.

4 Compressible Euler equations

4.1 Forward problem

We analyze the one-dimensional compressible Euler equations

u(x, t)t + f(u(x, t))x = 0, x ∈ [−L,L]; t ∈ [0, T ], (44)

with

u =

 ρρv
E

 , f(u) =

 ρv
ρv2 + P
v(E + P )

 , and P = (γ − 1)(E − ρv2

2
). (45)

We consider two problems:

1. Entropy wave, with γ = 1.4, domain length L = 10, Dirichlet boundary conditions, and initial
conditions

v(x, 0) = v∞ = 1, P (x, 0) = 1/γ,

and for density either

• Gaussian pulse:
ρ(x, 0) = 3(exp[−x2] + 1)

• Shock:

ρ(x, 0) =

{
6 if x ≤ 0

3 otherwise

For uniform velocity and pressure initial conditions, the forward problem becomes an advection
equation with velocity v∞ for the density:

ρt + v∞ρx = 0, (46)

and v and p remain constant.

2. Sod shock tube, which has domain a = −1 and b = 1, γ = 1.4, initial condition

{ρ, v, P} =

{
{1, 0, 1} if x ≤ 0

{0.125, 0, 0.1} if x > 0,
(47)

and Dirichlet boundary conditions. We will use T = 0.1 for this case; by this time a rarefaction,
contact discontinuity, and shock have formed. The exact forward solution is provided for
comparison by Toro (1999).
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4.2 Adjoint equations

The continuous adjoint Euler equations are

pt + A(u)>px = 0 (48)

where

p = u† =

 ρ†

(ρv)†

E†

 (49)

is the vector of conservative adjoint variables and

A(u) =
∂f

∂u
=


0 1 0

γ−3
2

u22
u21

(3− γ)u2u1 γ − 1

(γ − 1)
u32
u31
− γ u3u2

u21
γ u3u1 + 31−γ

2
u22
u21

γ u2u1

 (50)

=

 0 1 0
γ−3

2 v2 (3− γ)v γ − 1

(γ − 1)v2 − γEvρ γEρ + 31−γ
2 v3 γv

 (51)

is the inviscid flux Jacobian in terms of the conservative or primitive variables.

4.2.1 Characteristic-based approach

The eigen-decomposition of A is:

A = PΛP−1, (52)

where P is the column matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues:

Λ =

v 0 0
0 v + c 0
0 0 v − c

 , (53)

P =

 1 1 1
v v + c v − c

1

2
v2 H + vc H − vc

 , (54)

P−1 =


2(H − v2)

2H − v2

−2v

v2 − 2H

−2

2H − v2

v

c

v(c+ v)− 2H

4H − 2v2

v(2c+ v)− 2H

2c(v2 − 4H)

1

2H − v2

v

c

v(c− v) + 2H

4H − 2v2

v(2c+ v) + 2H

2c(v2 − 4H)

1

2H − v2

 (55)

where c is the speed of sound

c =
√
γP/ρ, (56)

and H is the enthalpy

H =
E + P

ρ
=

γ

γ − 1

P

ρ
+

1

2
v2. (57)
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We are interested in the transpose A>:

A> =(PΛP−1)>

=(P−1)>ΛP>

=(P>)−1ΛP>. (58)

Defining Q ≡ P> we have A> = Q−1ΛQ. Substituting into (48) yields

pt + Q−1ΛQpx = 0

Qpt + ΛQpx = 0.

Introducing a change of variable q ≡ Qp we have, by product rule,

qt = (Qp)t = Qtp + Qpt,

qx = (Qp)x = Qxp + Qpx,

and thus

qt + Λqx = (Qt + ΛQx)p,

qt + Λqx = (Qt + ΛQx)Q−1q. (59)

Following (59), the eigenvalue decomposition decouples the derivatives of p, though the equations
remained coupled as Q(x, t) is both space and time dependent and Q and its inverse are full
matrices.

Through fist-order time derivative operator splitting

qt + Λqx = 0 (60)

qt = Bq, (61)

where B ≡ (Qt + ΛQx)Q−1. (60) is a set of decoupled transport equations that admit the same
challenges as the adjoint inviscid Burgers’ equation of the previous sections in the presence of shocks.
Thus, all machinery developed for the adjoint inviscid Burgers’ equations can be supplanted here,
including the convergence proofs of (Giles and Ulbrich, 2010a), the analysis of (Fikl et al., 2016),
and the results from previous sections. (61) is problematic, as it contains both space and time
derivatives of u. However, these terms have already been accurately evaluated via the forward
solution.

A fully general solution {ρ(x, t), v(x, t), p(x, t)} yields

∂Q

∂x
=

0 vx vvx
0 vx + cx Hx + (vc)x
0 vx − cx Hx − (vc)x

 , (62)

where

cx =

√
γ

ρP

ρPx − Pρx
2ρ

(63)

(vc)x =

√
γ

ρP

ρ(vPx + 2Pvx)− vPρx
2ρ

(64)

Hx =
γ

γ − 1

ρPx − Pρx
ρ2

+ vvx. (65)
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In this case, the spatial derivatives of the primitive variables can be deduced from the derivatives of
the flux f(u)x as computed by a shock capturing scheme (e.g. WENO):

f(u)x =

F1

F2

F3

 =

 ρv
ρv2 + P
v(E + P )


x

=

 ρvx + vρx
2ρvvx + ρxv

2 + Px
κ(vPx + vxP ) + 1

2v
2(vρx + 3ρvx)

 , (66)

where κ ≡ γ/(γ − 1). Solving (66) for the derivatives of the primitive variables we have:

ρx =
F1(ρv2(3/2− 2κ) + κP ) + F2κρv −F3ρ

v(κ(P − ρv2) + ρv2)
, (67)

vx =
v(F1(κ− 1/2)v −F2κ) + F3

κ (P − ρv2) + ρv2
, (68)

Px =
v(F1(−κP − ρv2/2) + ρ(F2v −F3)) + F2κρ

κ (P − ρv2) + ρv2
, (69)

In the case of an adiabatic entropy wave we have v = v∞ and P = 1/γ as constants, so their
derivatives vanish and the solution is

∂Q

∂x
=

0 0 0
0 cx Hx + v∞cx
0 −cx Hx − v∞cx

 , (70)

with

cx = −1

2

ρx

ρ3/2
and Hx =

1

1− γ
ρx
ρ2
. (71)

Thus, so long as the (71) can be accurately evaluated, (59) can also be accurately and consistently
evaluated. Indeed (71) follow from a shock capturing forward solution, which computes f(u)x.
Finally the adjoint solution is recovered as

p = Q−1q, (72)

which is well-posed.

4.2.2 Another way to create a conservative product

pt + A>px = 0 (73)

pt + (A>p)x = A>x p (74)

Part of the problem of creating a stable, non-oscillatory simulation is evaluating derivatives of the
adjoint variable p, which will also contain discontinuities. In (73), the non-conservative product of
A> and px can contain discontinuities at the same spatial location, and will necessarily interact
with one another. The principal way to deal with such terms is though finite volume methods,
though in the case of a non-conservative product a FV scheme does not make sense. We can make
the equation well posed by creating a conservative product, where derivatives of the adjoint variable
p are either removed or moved into the conservative product. The spatial derivatives of A> are
already well evaluated from the forward equations.
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Figure 7: (a) WENO solution for density ρ(x, T ) and various resolutions N . (b) errors for ρ and v and varying N for
both WENO and FV. λ = 0.9 for all cases.

4.3 Numerical solutions

4.3.1 Forward solutions

The forward equations are solved using two methods:

WENO: A third-order WENO reconstruction on the conserved variables u and a local (GLF) or global
Lax–Friedrichs (GLF) numerical flux given by

f̂mi−1/2 =
1

2

[
fmi + fmi−1 − αi

(
umi − umi−1

)]
, (75)

where

αi = max
j=i,i−1

aj and aj ≡ |vj |+cj , (76)

where aj is the local (LLF) or global (GLF) maximum wave-speed and cj is the local (LLF)
or global (GLF) sound speed. The TVD RK3 is used for time integration.

FV: No reconstruction. A modified Lax–Friedrichs (MLF) numerical flux is used, which matches
(75) except αi = α = ∆xβ/2 maxi ai where i is over all spatial points (see also appendix A).
This keeps the dissipation required for stability due to the propagation of characteristics at
the maximum wave speed separate from that added for slowing down the sharpening of shocks.
The forward Euler method is used for time integration.

Diag: The characteristic-based diagonalization techniques of section 4.2.1. The forward solution is
the same as FV.

The CFL number

λ ≡ ∆t

∆x
max

i,t∈(0,T )
ai, (77)

where max is over all spatial grid points i = 1, . . . , N and times t.
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N ‖εv(x, T )‖1 PAS
64 0.026 4
82 0.021 4

100 0.018 4
128 0.014 5
200 0.0083 4
300 0.0064 5
400 0.0040 4

(a) νp = 0

N ‖εv(x, T )‖1 PAS
64 0.041 4
82 0.032 5

100 0.027 5
128 0.021 7
200 0.013 8
300 0.0098 9
400 0.0060 10

(b) νp = ∆x0.9

Table 4: WENO with and without additional dissipation. PAS is points across shock. λ = 0.6 for all cases. A finite νp
is required for the number of points across the discontinuity in v to increase with mesh refinement. Note that this was
a requirement for convergence for the Burgers’ equation.

4.3.2 Adjoint solutions

Again, the unmanipulated adjoint equations are:

pt + A(u)>px = 0. (78)

WENO: Reconstruction is performed on p. The spatial derivative px is taken as a Lax–Friedrichs flux
on this reconstruction with α = 0. The dissipation term is moved to the right hand side.

FV: Similar to WENO, the spatial derivative is taken as Lax–Friedrichs with the dissipation part
moved to the right hand side. This is the consistent formulation that goes with the forward
solution using this method, such that the dissipation and A> do not interact.

Diag: The scheme of FV is applied to each of the independent transport equations (60).

In most cases, the shock that forms only has a few grid points across it, regardless of resolution. In
previous sections we introduced artificial dissipation to ensure that the number of points across
the shock increases, even as the width of the shock decreases with increasing resolution. Here, this
takes the form:

pt + A(u)>px = νppxx, (79)

where it is unclear exactly what νp should be. We discuss variations throughout.

4.3.3 Magudi solutions

For verification we compare our smooth solutions to the solutions of Magudi (Vishnampet et al.,
2015). It is a compressible Navier–Stokes and Euler solver that implements high resolutions finite
difference methods in space and explicit RK4 time integration. Boundary conditions are imposed
via SBP–SAT energy stable schemes. Both continuous and discrete-exact adjoint solutions are
available. The code has a dissipation option useful for handling weak shocks, and so we only use it
for verification with always-smooth problems.

4.3.4 Mathematica solutions

For solutions that involve shocks, we also reference solutions from the Mathematica software package,
for which we implement a high-order pseudospectral method in space:
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# Eqns: Governing equations. DepVars: {t,x}. Scheme: Numerical scheme.

# Nx: number of spatial points. Order: Order of pseudospectral differentiation

Scheme[n_Integer, o_: "Pseudospectral"] := {

"MethodOfLines",

"SpatialDiscretization" -> {

"TensorProductGrid",

"MaxPoints" -> n,

"MinPoints" -> n,

"DifferenceOrder" -> o

}

}

NDSolve[Eqns, DepVars, {t, 0, T}, {x, -L, L}, Method -> Scheme[Nx,Order]]

4.4 Results: Adjoint fields

4.4.1 Entropy wave: Gaussian initial data

4.4.2 Entropy wave: Shock initial data

N/103 ρ†L ρ†R
4 11.1133 10.4378
8 11.1135 10.4383

10 11.1135 10.4383

(a) w = 14

N/103 ρ†L ρ†R
4 11.1106 10.4308
8 11.1123 10.4350

10 11.1126 10.4360

(b) w = 24

N/103 ρ†L ρ†R
4 11.1065 10.4204
8 11.1114 10.4329

10 11.1120 10.4343

(c) w = 34

Table 5: Mathematica adjoint density results at the left and right plateaus ρ†L/R = ρ†(xL/R), with xL = −0.5 and

xR = 0.75, following figure 9. Three levels of shock “sharpness” w are shown (a)–(c). For all w the solution appears
to converge, though to different values depending upon w, as expected.

4.4.3 Sod shock tube

4.5 Higher dimensions

The 2D Euler equations are

ut + f(u)x + g(u)y = 0, (80)

where f and g are the fluxes in the x and y directions, respectively. The corresponding linear
adjoint equation is

pt + A>(u)px + B>(u)py = 0 (81)

where

A(u) =
∂f

∂u
and B(u) =

∂g

∂u
. (82)

The time derivative operator of (81) can be split:

pt + A>(u)px = 0 (83)

pt + B>(u)py = 0. (84)
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Figure 8: Adjoint density fields for a Gaussian entropy wave. All solutions have λ = 0.4 and T = 5. Magudi and
non-dissipative RK3-CS solutions are shown for reference. All solutions converge with increasing N . Even the entropy
wave solution (advection equation forward in time) does not have an analytic adjoint solution. This is because the full
coupling introduced by the transpose of the inviscid flux jacobian A>, which re-couples the forward equations.
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Figure 9: Mathematica adjoint density field for a shock initial condition, T = 5, and N = 104. The forward solution
is the exact advection of an approximate shock ρ(x, t) ∼ tanh(−w(x− t)), and so the shock becomes thinner with
increasing w. The solution appears to converge to two plateaus, one to the left and one to the right of x = 0. Spurious
oscillations near the shocks are seen for w ≥ 9 due to insufficient spatial resolution for that degree of sharpness.

N/103 ρ†L ρ†R PAS
4 11.043 10.260 9
8 11.063 10.236 10

16 11.011 10.133 11
32 11.034 10.216 14
48 11.038 10.203 20

(a) WENO:GLF/νp = 0

N/103 ρ†L ρ†R PAS
4 11.149 10.491 14
8 11.163 10.541 18

16 11.127 10.462 25
32 11.123 10.455 36
48 11.121 10.452 44
64 11.120 10.450 51

(b) WENO:GLF/νp = 0.005∆x0.95

N/103 ρ†L ρ†R PAS
4 11.153 10.528 18
8 11.129 10.459 25

16 11.125 10.450 35
32 11.122 10.446 50
48 11.120 10.445 62
64 11.119 10.444 71

(c) WENO:GLF/νp = 0.01∆x0.95

N/103 ρ†L ρ†R PAS
4 11.151 10.378 73
8 11.140 10.396 103

16 11.133 10.409 145
32 11.127 10.417 204
48 11.125 10.421 249
64 11.123 10.424 288

(d) Diag/νp = ∆x0.95

Table 6: Adjoint density plateaus, as defined in table 5, for (a)–(c) WENO with varying artificial dissipation and (d)
Diag. The cases with the least dissipation, (a) and (b), do not converge for either plateau. (c) and (d) appear to
converge, though (d) more slowly as it entails more dissipation. Note that in all cases the number of points across the
shock (PAS) increases, satisfying the condition noted in previous sections, though we do not have convergence for all
cases here.
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Figure 10: Adjoint density fields for two methods (a) and (b), λ = 0.45, varying resolution and two viscosities νp
as labeled. Diag uses νp = ∆x0.95. We see that the WENO νp = 0 cases do not converge, while the other do. This
supports an argument that a sufficient amount of dissipation is required for a stable and convergent solution, though
it is unclear what this amount this. In this case the νp = 0.01∆x0.95 case has enough dissipation, or nearly enough,
for a converging solution in this very simple case, though this determination is ad hoc.
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Figure 11: Adjoint density field for the Sod shock tube problem with T = 0.1, λ = 0.45, νp = ∆x0.95. Spatial
resolutions N = 2k for k = 10, . . . , 16 are shown. We see that both WENO and FV converge to the same solution. In (c)
the Diag scheme converges to a different solution (only for 0 < x . 0.2, however), though qualitatively similar. It is
not immediately clear what solution is correct, if either. The diagonalization technique was developed such that the
correct amount of dissipation is added for a consistent solution. In (d), the Diag scheme is modified such that the
dissipation is added to the adjoint variable p rather than the diagonalized variable q (call this Diagp). This result is
consistent with the WENO and FV solutions.
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Each of (84) can be diagonalized following an analogous procedure to section 4.2.1:

A> = Q−1
(x)Λ(x)Q(x), (85)

B> = Q−1
(y)Λ(y)Q(y), (86)

where the (·) subscripts indicate the matrices in that coordinate direction, not partial derivatives.
We then have

pt + Q−1
(x)Λ(x)Q(x) px = 0 (87)

pt + Q−1
(y)Λ(y)Q(y) py = 0. (88)

Now each of (88) can be solved through a similar though a distinct change in variable:

q
(x)
t + Λ(x)q

(x)
x = (Q

(x)
t + Λ(x)Q

(x)
x )Q−1

(x)q
(x) (89)

q
(y)
t + Λ(y)q

(y)
y = (Q

(y)
t + Λ(y)Q

(y)
y )Q−1

(y)q
(y) (90)

where q(x,y) = Q(x,y)p. Each of (90) can be solved for q
(x,y)
t , again following section 4.2.1. We

can then compute pt through the backwards transform for each stage and sum the two. This is
more costly than the one-dimensional problem, since the forward and backward transforms must be
computed at every time step, though not prohibitively so compared to the similar decompositions
computed for WENO schemes.

5 Conclusions

We considered the adjoint Burgers’ and 1D compressible Euler equations, which are scalar and
vector hyperbolic conservation laws, respectively, that can develop discontinuities for even smooth
initial conditions. The goal was to identify consistent and convergent numerical methods for these
problems. This is particularly challenging in the presence of shocks, for which special numerical
methods are required for even just the forward equations. In this case, the most common techniques
are shock-fitting and shock-capturing. Shock fitting introduces the kinematic condition at the shock,
treating it independently from the continuous smooth equations. This method can be prohibitively
complicated: the shock conditions must be imposed at the shock location, which requires tracking
new shocks as they form and disappear. Further, a separate set of perturbation equations are
required for the adjoint problem. This method was not considered further. Instead, we investigated
shock-capturing, finite volume methods in particular, as a route to solve for the flow.

In the case of Burgers’ equation, we found that for a consistent and convergent adjoint solution two
conditions must be satisfied: dissipation keeps the number of grid points along the shock increasing
more quickly than the shock decreases in width as the grid is refined, and that the dissipation is
applied in a consistent way. This result was proven by Giles and Ulbrich (2010a) for a modified
Lax–Friedrichs scheme that satisfied these properties. Here, we showed that this result holds more
generally through empirical observation, and that the listed properties are sufficient for convergence
to a consistent solution.

Actual flow equations are more complex than the Burgers’ equation, and there are no proven results
to this end for even the compressible 1D Euler equations. This problem is more complicated primarily
because of the full-rank inviscid flux Jacobian that appears as a front-factor to the spatial derivative
of the adjoint variables, which fully couples all variables of the adjoint equation and forward solution.
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We aimed to demonstrate empirically if the above properties (consistent dissipation and increasing
points along the shock) were sufficient for convergence in this case. Unfortunately, exact solutions
to the adjoint equations are not available, even for cases without shocks. As a result, we first
considered the convergence of the solution, regardless if it was the correct one. In the case of an
advecting adiabatic entropy wave with discontinuous initial data, we showed that some dissipation
was required for a converging solution, and that the amount utilized for Burgers’ equation was
sufficient. We also considered a Sod shock tube initial condition, which displays discontinuities in
all flow variables. Again, we saw that with sufficient dissipation a converging solution could be
found. For this problem we also introduced a characteristic-based formulation of the adjoint, which
aimed to solve a set of uncoupled transport equations along the forward solution characteristics.
These transport equations were qualitatively no different than the adjoint Burgers’ equation, and
so the same consistent and converging numerical methods should be able to be applied. Upon
using this method for the Sod shock tube, we saw a different converging solution than the solution
involving full coupling. Ultimately, we showed that the way the dissipation is added, even if it
is of the same magnitude, can effect the solution. This disagreement occurred even though both
conditions stipulated by Giles and Ulbrich (2010a) for consistent and convergent solutions to the
adjoint Burgers’ equation were satisfied. The characteristic-based scheme was also extended to
two-dimensions.
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A Lax–Friedrichs fluxes

The hyperbolic conservation law can be written in semi-discrete form as

(ut)i +
f̂ i+1/2 − f̂ i−1/2

∆x
= 0 (91)

The Lax–Friedrichs numerical flux takes the form

f̂ i−1/2 =
1

2

[
f i + f i−1 − α (ui − ui−1)

]
, (92)

where

Global Lax–Friedrichs (GLF): α ≡ ∆x

∆t
(93)

Modified Lax–Friedrichs (MLF): α ≡ 2ν

∆x
; ν ≡ ∆xβ (94)

With (91) we have

ut +
f i+1 − f i−1

2∆x
=
α

2

[
ui+1 − 2ui + ui−1

∆x

]
(95)

which takes the form

ut + fx = εuxx where ε ≡ ∆xα

2
, (96)

and fx and uxx are approximated with the usual second-order central difference schemes. With
(93) and (94) this gives

GLF: ε =
1

2

∆x2

∆t
(97)

MLF: ε = ∆xβ (98)

The GLF scheme looks like ε = ∆x/2λ where λ = ∆t/∆x is a CFL number that is typically fixed,
and so ε = c∆x upon mesh refinement, whereas the MLF scheme has β < 1, and thus the dissipation
becomes smaller more slowly when decreasing ∆x than the GLF. This ensures that shocks are
dissipated across an increasing number grid points as the mesh is refined.
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