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Abstract

This work focuses on the mechanical stability of three different capsule-viscous-flow-systems.

Red blood cells, which are often modeled as capsules, can form uniform “trains” when flowing

in narrow confines; however, in less confined environments their flow appears disordered.

This time-stationary system is analyzed through a nonmodal stability analysis which includes

full coupling between the viscous fluid flow and elastic cell membranes. The linearization

is constructed via a complex set of orthogonal small disturbances which are evaluated

using boundary integral techniques. Transiently (t → 0+) and asymptotically (t → ∞)

unstable disturbances are identified, with their corresponding growth rates and perturbation

conformations depending upon on the flow strength, viscosity ratio between the inner and

exterior cell fluids, cell–cell spacing, cell at-rest shape, and vessel diameter. An ellipsoidal

capsule subject to homogeneous shear flow is also considered. While this flow configuration

is seemingly more simple, the base motion of the capsule is time-dependent, though periodic,

rather than steady, requiring an extension of our methods. This capsule flow is known to

display different kinematic behavior, depending on the flow strength, membrane material

properties, and capsule shape. The stability of the capsule motion has been studied based

on empirical observations of simulations; here we build upon these results though a direct

stability analysis. Our analysis utilizes Floquet methods, which yields Floquet multipliers

that classify the asymptotic stability of the capsule motion, and quantify how viscous

dissipation will rapidly damp most disturbances. However, we also identify disturbances that

decay slowly, over many periods of the capsules rotating motion, as well as neutrally stable

perturbations. The last flow system considered here is a spherical capsule subject to large

amplitude oscillatory extensional (LAOE) flow, which is often used to study the rheology and

dynamics of complex fluids. Examining soft particles in LAOE is particularly challenging,

partially due to the instability of the flow system. We again quantify this stability through

linear analysis, here extending the aforementioned Floquet formulation to include nonmodal

and intra-period effects. The analysis shows the asymptotic stability of the capsules for all

flow descriptions, as defined by the relative flow strength and capsule time scale. Transiently

unstable modes are found for all cases, though again their growth saturates quickly. We also

identify an intra-period instability to capsule translations, which matches that of a rigid

particle, though it does not have finite amplification from period-to-period.
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1 Introduction

1.1 Capsules

Capsule is a term popularized by Barthès-Biesel for an elastic membrane enclosing a drop

of incompressible fluid [6–8]. Examples of natural capsules include cells, vesicles, viruses,

and eggs. Red blood cells, a focus of this work, are a common example of a natural

capsule. As seen in figure 1.1, a distinct biconcave shape is formed by the membrane. The

membrane itself is complex: formed by a lipid bilayer, decorated by molecular components

such as proteins [9, 10], buttressed by a spectrin filament network [11], and filled with an

approximately homogeneous and Newtonian fluid called the cytosol [12–14]. This membrane is

approximately 8 µm in diameter and 100 nm in thickness [15–17]. Indeed capsule membranes,

is general, are thin, approximately 100 times smaller in thickness than diameter. Thus, a

thin-shell model is justified to describe the capsule-scale mechanics. While the molecular

details of the capsule membrane can be important for the properties of any particular

capsule system, we will focus on the finite-deformation dynamics of their highly deformable

membranes.

Inspired by biological membranes, artificial capsules have been manufactured efficiently in

large quantities with suspension cross-linking [18, 19], coacervation/phase-separation [20,21],

inkjet printing [22–24], and solvent evaporation techniques [25,26], though these capsules typi-

cally have nearly spherical shapes, as more complex geometries are difficult to manufacture re-

liably [27–29]. Methods have also been developed for manufacturing capsules-within-capsules,

(so-called compound capsules) [30–32]. Artificial capsules are typically manufactured using

synthetic polymers, such as alginate, poly-L-lysine, or polyacrylates [33–35], or biopolymers

(a) Red and white blood cells (b) Model red blood cell

Figure 1.1: (a) Scanning electron microscope image of human blood at rest [1] and (b) model cell
used in this work.
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such as cellulose derivatives [36,37].

These advancements in manufacturing have increased interest in the applications for

such capsules. For example, artificial capsules have been utilized for inkjet printing [38],

cosmetics [39, 40], gums [41, 42], textiles [43, 44], repellents [45, 46], flame retardation [47, 48],

release of aromas and flavors [49–51], absorption of CO2 in gas plumes [52], and for biomedical

purposes including targeted drug delivery [53–56] and screening [57,58], contrast-enhanced

ultrasound techniques [59], and the development of artificial blood [60,61] and organs [62–64].

In certain applications, such as those involving selective membrane transport, artificial

capsules can even outperform their biological counterparts [65, 66]. In most settings, the

capsules are immersed in a flowing suspending liquid, called a capsule suspension. As a

result, the flow of the suspension can depend on the capsules themselves, which we consider

next.

1.2 Capsule suspensions: kinematics and stability

The dynamics and rheology of particulate suspensions depend upon the mechanics of the

suspended elements, especially when they are highly confined. In these cases, the particle

deformation is strongly coupled with the overall flow dynamics [8, 67–70], making it difficult

to analyze. While suspension of other types share this property (e.g. rigid-particle [71,72]

and colloidal suspensions [73, 74]), we focus on elastic capsules due to their versatility, as

described in section 1.1, and physiological relevance (discussed next). Herein, we investigate

a variety of capsule flow systems, particularly in regard to their stability, beginning with

cellular blood flow.

1.2.1 Microcirculatory blood flow

Capsule suspensions have been studied for a long time, blood flow perhaps being the first of

such efforts. Whole blood is a suspension primarily composed of red blood cells (erythrocytes),

which makeup approximately 45% of blood by volume [75], though the exact proportion

depends upon the vessel size [76–78]. Other prominent constituents are white blood cells

(leukocytes) and platelets, though these make up less than 2% of whole blood by volume [79],

so the mechanics of blood flow are generally dominated by red blood cells [80]. These

components are suspended in plasma, which is an aqueous solution of organic molecules

and proteins that is often modeled as a homogeneous Newtonian fluid [12, 14, 81], and is

considered in this approximation here.

Poiseuille was the first to study the mechanics of circulatory blood flow [82]. He defined

an effective viscosity, the viscosity as deduced based on pressure drop were it a homogeneous

Newtonian fluid,

µeff =
〈∂xp〉D2

32U
, (1.1)

where 〈∂xp〉 is the pressure drop in the streamwise direction, U is the mean flow velocity,

and D is the vessel diameter. This measure, useful for defining viscous flow resistance,
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combined with typical length scales and flow velocities of microcirculatory flow [78, 83],

give a small Reynolds number, typically Re < 0.01. Thus, flow inertia is negligible and

Stokes flow typically assumed [84,85], which we utilize here. In vitro blood flow studies then

became more common, motivated by medical therapies, such as those of blood pressure [86],

metabolism [87], and inflammatory response [88]. Ultimately, these efforts led to the discovery

of a complex scale-dependent behavior of effective viscosity [78,89–91], a particularly famous

example of which is the non-monotonicity of effective viscosity with vessel diameter. Known

as the F̊ahræus–Lindqvist effect [92,93], the root mechanism of this behavior is the formation

of a cell-free (or cell-depleted) layer, or simply a layer near the vessel wall where cells are

typically not found. A direct result of red-blood-cell-membrane mechanics [94–99], the

cell-free layer acts as an effective lubricant for a red-blood-cell-rich core flow, and is thought

to be an important factor in microcirculatory dynamics [5,100]. A marginating phenomenon

has also been observed: white blood cells and platelets typically flow more near the vessel

wall than red blood cells [101–105]. This behavior is, again, thought to be due to the

mechanics of the red blood cells, particularly in regard to their relative stiffness [106–108].

Margination is known to be important for the rolling [80,109] and attachment [109] of white

blood cells to the vessel wall [110], and thus the inflammatory response that occurs due to

disease, such as that of Alzheimers [111–113], cancer [114–116], and osteoarthritis [117, 118].

These flow phenomena are examples of the complex behavior often observed in non-

Newtonian flows. The bulk rheological characteristic of whole blood is evidenced by its

scale-dependent effective viscosity [84] and blunted velocity profile [119], leading it to be

classified as non-Newtonian in these contexts. Further, the effective viscosity of blood is

also a function of shear-rate for sufficiently narrow confinement or small shear-rates, and is

thus viscoelastic in these conditions [120,121]. This property is primarily due to the elastic

energy stored in red blood cells as they deform, then dissipated via viscosity [121, 122],

and is suspected to be affected by red blood cell aggregation and alignment in flow [122].

Further, at sufficiently small shear-rates, this aggregation leads to a yield stress [123,124].

That is, for sufficiently small shear stresses whole blood effectively behaves as an elastic

solid. These observations have challenged the use of continuum models for blood flowing in

narrow confines. However, continuum modes have been useful when the blood vessels are

many cell diameters across, and the specific dynamics of any single cell are not suspected to

be important [78,95,125]. For example, the Maxwell model (and its nonlinear extensions),

which quantifies the shear stress–strain-rate relationship by a spring and dash-pot in series,

has been used to model whole blood viscoelasticity [126,127]; and the Bingham model, which

defines the strain rate as a step-function of shear stress, has been used to model the yield

stress behavior [128, 129]. More complex models, and combinations of models, have been

developed in pursuit of predicting microcirculatory flow phenomena [78,130,131], though they

necessarily do not account for the finite deformation and dynamics of individual cells, which

are known to be important in sufficiently narrow confines. Thus, we will model individual red

blood cells as finite-deformation thin-shell membranes suspended in and encasing Newtonian

fluids, and not attempt such a continuum flow description.
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1.2.2 Capsule suspensions of other types

Development of artificial capsules has encouraged the study and design of other capsule

suspensions. Simulation-based efforts have identified the roles of the confining geometry [132–

135], capsule shape [104,132] and stiffness [104, 133,136], and flow strength [135,136] on the

flow and its rheological character. For example, the present author found that varying the

capsule geometry from round to a more slender shape affects the suspension rheology through

a buckling mechanism [132]. In this case, more slender capsules trigger a rotational-type

response, as quantified through multipole analysis, which is concomitant with a disappearance

of the capsule-free layer observed in suspensions of more round capsules, and a stark increase

in the effective viscosity. The article which describes this behavior in detail is included in

appendix B for completeness.

The importance of capsule-scale kinematic behavior for determining rheological and

bulk-flow properties then motivates study of the mechanical stability of the capsule flow

motion itself. Studying the stability of such a fluid–structure flow system directly is difficult

due to its spatial complexity and intrinsic nonlinearity of the governing equations, so highly

accurate numerical simulations are often required. Herein, we present a series of analyses

based upon common capsule flows.

1.3 Cell-train stability

We first consider the stability of red-blood-cell trains [137]. Red blood cells flowing in vessels of

diameter smaller than D ≈ 8 µm are observed to take in an axisymmetric bullet-like formation

along the vessel center-line [70, 138–142], which is often referred to as a cell train. However,

as D increases such trains are not observed [138, 143], as seen in figure 1.2, presumably

because it is unstable, and the cellular flow appears far more complex [139,144–148]. This

empirical behavior has been reproduced in detailed numerical simulations [4,136,149]; an

example in figure 1.3 shows sensitivity of the apparent stability to packing fraction. In this

case, the more packed flow appears chaotic, and it is known that Stokes flow can display

chaos in two-dimensional mixing [150, 151], some three-dimensional flows [152–155], and

N -body systems such as a viscous suspension of spheres in a rotating cylinder [156,157], so

it is not surprising that such a transition can occur.

Here, we follow a previous study the stability of a two-dimensional model of such trains

flowing in a narrow channel [158], which exhibited both transiently and asymptotically

amplifying disturbances. Depending on the packing fraction and channel width, these

disturbances showed an array of conformations: rigid-body-like tilts, lateral translations, and

compressive “waves” of streamwise inter-cell spacing. This study is included in appendix C for

completeness. Although this study of two-dimensional capsule trains was motivated, in part,

by observations of red-blood-cell trains, given the well-known limitations of two-dimensional

as model for phenomenology in three dimensions (especially in the viscous limit), we extend

these methods to study the stability of geometrically and mechanically realistic red-blood

cell trains. This has required an extension of the formulation and significantly more involved

simulations.
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(a) (b)

Figure 1.2: Experimental observations of red blood cells flowing in (a) channels [2] and (b) tubes [3].

(a) Empirically stable

(b) Unstable

Figure 1.3: Empirical stability example for red blood cells using methods of Zhao et al. [4]. Both
configurations were equally perturbed, but the N = 8 cell train in (a) seems to persist indefinitely,
whereas the more dense N = 12 case in (b) undergoes a rapid transition. This shows a sensitivity
to packing fraction in addition to diameter sensitivity discussed in the text.
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At the outset, we can anticipate potential differences from our two-dimensional capsule-

train study. The more rapid decay of the Stokeslet Green’s function in three dimensions [159]

can be anticipated to lead to more localized (or shorter) streamwise wavelengths of the

most amplifying disturbances. The elastic resistance of the membrane is also fundamentally

different. Like the two-dimensional capsule model, a red blood cell has a strong resistance

to membrane dilatation. However, a shear modulus, without a direct analog in the two-

dimensional model, is most important, while there is only weak bending resistance. Red

blood cells are also known to have an interior viscosity that exceeds that of the suspending

plasma; we consider this here, though it was not studied in the two-dimensional model.

The source of this instability is unknown, particularly in how it might be affected

by cell properties or flow configurations, which can be altered, for example, by disease

in red blood cells. In addition to the basic role of blood cells in transport through the

microcirculation [81,160,161], many important microcirculatory flows are potentially sensitive

to this change in character: the cell-free layers that form near vessel walls [162–164], the

margination of leukocytes or platelets [102–105,165], intravenous drug-delivery of particles

and capsules for which both cross-stream transport and the thickness of the near-wall cell-

free layer can be important [166], the hemodynamic forces that mediate angiogenesis [167]

and development [166, 168, 169], and tumor growth in cancer [170]. Cell-train stability is

potentially even more important for microfluidic devices designed to manipulate the flow of

cells or engineered capsules in order to perform sorting or other processing [171–176]. In

such devices, it is seemingly easiest to develop processing procedures that operate on ordered

trains rather than chaotic and disperse arrangements.

Thus, we focus on the character of the transition between the orderly flow, typically seen

in the narrowest tubes or vessels [138, 143], and its apparently chaotic counterpart, typically

seen in less confined configurations [144,145]. Our goal is to identify factors mediating its

transition, the rate at which disturbances amplify, and the character of the most amplifying

disturbances. A three-dimensional flow of uniformly spaced red blood cells, which empirically

displays this threshold behavior, is analyzed as a model system.

Our analysis is similar in spirit to stability analyses of settling rows or columns of rigid

spheres in free space [177–179] or near a wall [180], which is analytically tractable in the limit

of infinitesimal spheres, though often by neglecting interactions beyond nearest neighbors.

The stability of one-dimensional droplet arrays has also been studied [181–186], though the

simplicity of the droplet flow system enabled an illuminating analytic linearization of the

governing equations. We have been unable to find a usefully simplified analytical description

for elastic membranes. While similar in character to these simpler configurations, our study

includes all viscous-flow interactions, including the coupled elastic stresses in the deformable

capsule membranes. This complexity necessitates some reliance upon numerical methods,

though the stability behavior itself is relatively clear.

While this many-cell confined flow system is complex, it is time-stationary in the cell

velocity. More challenging is capsule motion in homogeneous shear flow, which requires a

stability formulation that accounts for the time dependency and is considered next.
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Figure 1.4: Schematic of the model homogeneous shear flow system and velocity field.

1.4 Stability of capsules in homogeneous shear flow

Determining the terminal dynamics of capsules in simple flows is a long standing problem. In

particular, the stability of capsule motion when subject to homogeneous shear flow is thought

to be important. If capsules undergo steady or periodic motion for particular flow conditions,

we anticipate less collective viscous resistance. However, if the motion of a capsule in shear

flow is fundamentally unstable, we can anticipate this to cause greater resistance to flow.

Unsteady capsule motion can also be expected to cause additional stress on the capsule

membranes, which can be often be fragile [187–189]. Studies of capsule stability in this

respect have been based upon simulations, with the stability characterized by empirical

observations of the flow system. We introduce direct stability analysis of this system. Like

the empirical studies that guide it, our analysis relies upon numerical simulations. These

are used to construct a linearized system for analysis, which is advantageous as it predicts

the linear evolution, and thus the stability, of perturbations spanning the entire space of

possible membrane disruption according to our description of its surface.

We focus our investigation on spherical and ellipsoidal capsules in simple shear flow,

as shown in figure 1.4. This flow is known to produce a rich set of capsule kinematics,

which depend upon the capsule shape and flow strength [190]. Computational studies have

considered flow in both the Stokes limit [190] and with finite inertia [191, 192]; here, we

only consider the viscous limit. The first efforts found that capsules with their revolution

axis placed in the shear plane (x̂–ŷ plane, here) were bound to remain in it [193–199]. For

prolate capsules, weak flow strength, and long times, capsules have been observed undergoing

a rolling motion, where the membrane rotates around the deformed capsule shape. For

larger flow strength, the capsule precesses around the flow vorticity axis (ẑ, here), and for

still larger flow strengths a swinging motion is observed, where the membrane rotates and

undergoes oscillatory deformation [190,192]. Oblate capsules have been observed undergoing

similar motions at long times [191,192,200]. For weak flow strength, the capsule displays

a swinging motion. A wobbling motion has been observed for intermediate flow strength,

where the capsule oscillates about an intermediate angle from the shear-plane (x̂–ŷ plane,

here), and for sufficiently strong flow the capsule undergoes a rolling motion.

Experiments of artificial capsules significantly deviating from spherical shapes do not

exist, as reliable techniques to fabricate them have not been developed (see section 1.1).
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However, manufactured ellipsoidal capsules of shape slightly deviating from spherical have

been observed undergoing significantly different behavior than spherical capsules [201,202].

For small shear-rates, a tumbling regime exists, and a swinging regime has been observed

at larger shear rates. Red blood cells are ubiquitous examples of oblate capsules and have

been observed experimentally for a long time. While red blood cells are more complex

than artificial capsules, they can still serve as a reference for computational efforts. Red

blood cells in homogeneous shear flow have been observed undergoing a tumbling motion

at small shear-rates and a swinging motion at larger shear rates [203–205]. However, the

tumbling behavior was later found to be unstable, subsequently undergoing a rolling, then

tank-treading motion [206–208].

Previous simulation-based studies have observed the long-time motion of ellipsoidal

capsules to be independent of the initial capsule orientations they test, as quantified by

the inclination of the capsule out of the shear-plane [190, 200], except for an instance of

conflicting results [191], previously hypothesized to be due to too short of computation

times [200]. However, this empirical result does not necessarily fully classify the stability,

as it does not consider perturbations beyond the initial tilt of the capsule, such as those

involving membrane deformations. It is known that particular membrane deformations can

be unstable in other capsule flows, such as those found for slender capsules in sufficiently

strong extensional flow [209] and capsule-trains flowing within channels [158] and tubes [137],

so we anticipate this type of instability is possible for a capsule in simple shear flow. Our

goal is then to classify the stability of these long-time capsule motions according to an

accurate representation of its surface. This is done through a detailed linear stability analysis

which spans all possible capsule disturbances as deduced from a spectral description of the

membrane, and determines the rate as which perturbations grow or decay.

Our analysis is most closely related to the Floquet stability analysis of axisymmetric

rigid particles in shear flow with weak inertia [210], though the simplicity of the rigid particle

dynamics allowed for an analytic linearization of the governing equations about the periodic

particle motion, and thus the stability. The deformable membrane introduced here presents

additional complexity, and seems to preclude a direct extension of this previous method.

We next discuss another time-dependent capsule flow system, namely that of large

amplitude oscillatory extension. This system introduces important nonmodal and time-

global instabilities [211], requiring an extension of the stability analysis, and is discussed

next.

1.5 Stability of capsules in large-amplitude oscillatory

extensional flow

Oscillatory rheometry is often used to measure the rheological properties of polymer solutions

and blends [212,213], melts [214], and colloidal [215] and capsule suspensions [216,217]. We

focus on the large-amplitude oscillatory extensional flow (LAOE) shown in figure 1.5, which is

used to quantify nonlinear viscoelastic and extensional flow phenomena, such as the unraveling

and alignment of flexible bio-filaments [218]. While bulk properties of complex fluids, such
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Figure 1.5: Schematic of the LAOE model flow system.

as melts and cross-linked polymer networks [219,220], have been successfully examined using

LAOE for a long time, micro-scale single particle studies are more challenging. A cross-slot

flow is useful for examining such particles in extensional flow [221–224], and a sophisticated

control mechanism seems necessary to maintain the particles position. Though complex,

these techniques have enabled examination of polymer strands, including DNA [225,226].

Quantifying the instabilities of such flow configurations, especially when the particles of

interest are themselves complex, is potentially informative for the design of such microfluidic

traps and devices. Here, we investigate this stability directly through a linear Floquet

analysis of a model flow system.

Here we consider elastic capsules as canonical soft particles (visualized in figure 1.5).

A steady flow version of a similar system has been studied; these efforts used numerical

simulation [209, 227, 228] and experimental observation [229, 230] to identify shape insta-

bilities of elongated axisymmetric vesicles in uniaxial axisymmetric extensional flow. The

conformation and growth rate of the instabilities were found to depend upon the strength of

the flow and the shape of the vesicle, with sufficiently round shapes being stable for all flow

strengths. Capsules and vesicles in oscillatory flow can exhibit qualitatively different motion

and stability than the steady-flow version of the same system, such as ellipsoidal or biconcave

capsules in oscillatory [231–233] versus steady homogeneous shear flow [190,198,200,207], so

we anticipate capsules in oscillatory extension could share this behavior. Further, the shear

resistance of a typical capsule membrane, often absent in models of vesicles, can be expected

to qualitatively influence the stability of its motion as it does for capsules-trains flowing in

tubes [137].

While this flow system is time-periodic, the capsule undergoes large deformation over the

course of the period, and so we anticipate that intra-period effects can be important to its

stability. Thus, a nonmodal and time-global linear Floquet stability analysis is appropriate

for this system, which we discuss in the next section.
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1.6 Linear stability analysis

The aforementioned capsule flow systems are analyzed through a linear stability formulation,

which includes both eigensystem and singular-value analyses for predicting long-time and

transient behavior of perturbations, respectively. Here, these methods are adapted to the

fluid–structure coupled system in the viscous-flow limit, which includes full coupling between

the capsule membrane and the interior and suspending fluid using a boundary integral

method.

Beginning with the capsule-train system of chapter 4, we introduce a linearization about

the axisymmetric and steadily-advecting train is constructed via a full-rank set of orthogonal

small disturbances based upon the capsule membrane description. This gives a matrix that

describes the coupling between any small disturbance and the unperturbed base flow, which

can be analyzed through traditional methods [234,235].

We then extend this formulation to time-periodic flows, beginning with capsules in

homogeneous shear in chapter 5. The periodicity of this system enables the use of traditional

Floquet methods. In these cases, the system is linearized about the evolving configuration,

which is represented by a discrete set of temporal realizations representing one period of the

flow. This representation facilitates the time-integration necessary to determine the stability.

Finally, capsules in LAOE flow, as discussed in chapter 6 undergo large deformation

over the course of one period. As a result, we anticipate that nonmodal and intra-period

effects might be important. Thus, the previous asymptotic Floquet formulation is extended

to consider this through singular value analysis. In all cases, direct numerical simulations

are used to verify the predicted amplification rates.

1.6.1 Previous studies

Our formulation follows a similar approach to that used to analyze shear-flow instability

at larger Reynolds numbers [234–240]. Similar non-modal stability analyses have also been

used to study rheologically complex flows [241–243], but do not appear to have been used to

analyze the behavior of confined particle suspensions, such as we consider here for flexible

capsules.

The Floquet methods introduced for the time-periodic flows we consider have also been

useful in understanding other complex flow phenomena: Flow in driven cavities [244–246] and

oscillating channels [247] and pipes [248–250]; vortex streets of flow past rings [251, 252] and

objects of square [253] and circular [254–256] cross-sections; pulsatile channel flow [257–260];

and Stokes layers which arises over an oscillating boundary [261–265] have all relied on

Floquet methods to classify their stability. Given the complexity of these problems, an

analytic Floquet formulation is rarely available and there is reliance on numerical methods.

Such computations are often prohibitively expensive when the fluid itself is discretized, given

the size of the discrete system in space, combined with the periodic time-dependence. This

motivated proper orthogonal decomposition (POD) [266, 267], dynamic mode decomposition

(DMD) [268,269], and Koopman operator methods [269,270] for constructing data driven

reduced systems. However, there is little previous work on Floquet problems that include
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fluid-structure interaction, such as we consider here with a fully coupled elastic membrane-

viscous flow system.

1.7 Overview and key findings

1.7.1 Overview of dissertation

The physical capsule model is introduced in chapter 2, which is extended for the specific flow

configuration in subsequent chapters. The numerical methods used to solve for the flow have

been developed previously [4], are described for completeness in chapter 3, including the

capsule surface description in section 3.1, the boundary integral formulation in section 3.2,

the enforcement of a no-slip wall surface in section 3.3, and the capsule volume constraint in

section 3.5.

Red-blood-cell-train stability is found in chapter 4. In section 4.1, the model blood vessel

system and numerical implementation are detailed. The time-stationary linear stability

analysis is described in section 4.2. Results in section 4.3.2 show transiently and asymptoti-

cally unstable disturbances and their amplification rates for different vessel diameters and

packing densities. The long-time evolution of these disturbances, along with randomized

ad hoc disturbances for comparison, are tracked into a nonlinear and disordered regime

through direct numerical simulations (DNS) in subsection 4.3.2. Sensitivity of the train

stability to cell-interior viscosity, membrane flexibility, and cell volume is also assessed, using

a long-established nominal physiologic red-blood-cell model as a baseline case. The strain

energy required to form the most amplifying disturbances is quantified in section 4.3.6.

Ellipsoidal capsules in homogeneous shear flow are then considered in chapter 5. Details of

the specific physical model system and numerical implementation are discussed in section 5.1.

We verify that our simulations reproduce particular results of previous studies in section 5.2;

these also serve as the time-periodic base flows for the subsequent Floquet analysis. Our

stability analysis is then extended from the time stationary formulation in section 5.3. The

stability of the capsule motion, as deduced by our Floquet analysis, is presented in section 5.4

for a range of flow strengths.

The stability of spherical capsules in LAOE flow is investigated in chapter 6. The specific

physical model and details of the numerical method are in section 6.1. In section 6.2 we

present our construction of the time-periodic base-flows for analysis. The asymptotic Floquet

analysis used to study capsules in homogeneous shear is extended to a global and non-modal

effects in section 6.3. We verify our analysis and assess the capsule stability for cases of

varying flow strengths and oscillatory time scales in section 6.4.

We present a cohesive set of conclusions and possible directions for future work in

chapter 7. This includes a discussion of reduced models for anticipating red-blood-cell-train

behavior, including continuum-based and rigid-sphere systems. Further detail on these

hypotheses are found in the appendix.
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1.7.2 Key findings

Red-blood-cell-trains

• The stability of flowing trains of red blood cells is quantified for varying vessel size,

cell–cell spacing, cell shape, viscosity ratio between the interior and exterior fluids,

and flow strength.

• Cell trains of moderate cell–cell spacing are asymptotically marginally stable for

sufficiently small vessel diameters.

• All trains are transiently unstable, though this growth saturates quickly. Fur-

ther, transiently unstable perturbations cannot form spontaneously due to thermal

fluctuations as they entail large strain energy.

Capsules in homogeneous shear flow

• Swinging and rolling oblate capsules in homogeneous shear flow are asymptotically

stable.

• Nearly all capsule perturbations dissipate completely before one period of the flow

has elapsed.

Capsules in large-amplitude oscillatory extensional flow

• Spherical capsules in LAOE are asymptotically stable for all flow strengths and flow

periods.

• All cases are transiently unstable, though this instability saturates quickly, and is

thus expected to be unimportant for most applications.

• Spherical capsules exhibit an intra-period instability associated with a translational

disturbance, which is able to amplify many orders of magnitude in some cases. This

instability matches that of a rigid infinitesimal particle in the same flow.
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2 Capsule model

2.1 Models of capsule mechanics

Herein, we develop a model for red blood cells flowing in the microcirculation, which will also

serve as a model of artificial capsules that are often more simple in character. As discussed

in section 1.1, red blood cells are natural capsules that encapsulate a very nearly Newtonian

hemoglobin solution, though its rheological properties have not been thoroughly studied.

We assume this fluid to be Newtonian, which is known to be a good assumption in the

microcirculatory flows we will consider.

The elastic membrane of the red cell is highly deformable and can undergo large deforma-

tion in response to shearing and bending forces, allowing them to flow through capillaries even

smaller than the nominal cell diameter. However, the membrane is nearly incompressible;

that is, it maintains a nearly constant surface area due to a strong resistance to dilatation, a

characteristic of its lipid bilayer structure.

The mechanics of red blood cell membranes have been modeled at varying levels of

detail, from discrete representations of its molecular structure to purely continuum-based

approaches, which are utilized as appropriate for the flow they are suspended in. We consider

these in turn.

2.1.1 Discrete models

Discrete representations of red blood cells membranes attempt to faithfully model its

molecular detail. Efforts to this end have described the membrane spectrin network down to

the level of individual junctions using, for example, bead chain mechanics [271–273]. However,

these models entail a very fine surface resolution, and have thus been computationally

prohibitive for long simulations of many-cell flows. To this end, coarse-grained methods

have been developed at varying levels of granularity, describing the microstructure more

efficiently and reducing the degrees of freedom required [274–277]. This has facilitated larger

simulations of models that represent the membrane microstructure, and in some cases yields

simulations even more efficient than continuum-based representations [278].

These models have proved invaluable in simulations involving very large deformation or

finite-temperature cell deformation, such as those involving micropipette aspiration [276,

279, 280] or deformation with simulated optical tweezers [271, 281, 282]; flows where the

molecular structure itself is anticipated to be important, such as those involving diseases

processes [283,284] or cell aging [285,286]; or flows involving cell lysis (membrane destruction),

where a continuum model is clearly inappropriate [174,287], or plastic deformation for which

a purely elastic representation cannot model the mechanics [288,289].
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2.1.2 Continuum-based models

Thin-shell elastic continuum models have been developed as simplistic representations of

complex capsule membranes, such as that of the red blood cell. These efforts have modeled the

shear, dilatation, and bending resistance of actual membranes. As a result, continuum-based

approaches have been successful in reproducing important properties of complex capsule

suspensions. For example, these thin-shell models have reproduced the effective viscosity [4],

F̊ahræus effect [143], blunted velocity profile [144], specific membrane deformation [143,290],

and wall shear stress footprint [75] of microcirculatory flow. Thus, explicitly modeling the

microstructural detail of red cell membranes is not required to reproduce these important

properties of the flow. Commensurate with the goals of this work, which only require an

accurate representation of these complex flow properties, we will utilize a thin-shell elastic

model and do not consider the molecular makeup of any specific capsule.

We note that red blood cells also have a surface viscosity due to their lipid bilayer

structure, estimated by extensional creep test simulations and experimental observations to

be about 0.04 Pa s [291, 292]. Mesoscale models that incorporate a finite membrane viscosity

have found this contribution to only be important in extreme flow conditions, such as for

the membrane loss modulus as computed from twisting torque cytometry simulations, which

are utilized as simplifications of optical magnetic twisting cytometry experiments [291,293].

However, the properties of microcirculatory flow simulations under physiologic conditions,

such as those listed above, are known to be independent of the inclusion of such a membrane

viscosity [70,294,295], and so we will ignore it.

While a thin-shell continuous elastic model is appropriate for our purposes, there are still

many choices for modeling finite-deformation capsule mechanics, agnostic of the molecular

makeup or origin of any particular membrane. Neo-Hookean membrane models have been

used [296–299] and could be easily implemented. While they display a strain stiffening

behavior (with a linear dependence of membrane tension on its deformation), this law only

includes a shear modulus and, thus, its resistance to dilatation is not adjustable. As such, the

neo-Hookean model is not considered to be appropriate for modeling nearly incompressible

red blood cell bilayer membranes, or other capsules that strongly resist dilatation. The

Mooney–Rivlin constitutive law has also been used to model capsule membranes [201,296,300]:

it behaves as a rubber-like three-dimensional incompressible material, though its variation in

thickness is often assumed to be negligible in these instances. However, the Mooney–Rivlin

model is strain-softening, and is thus inappropriate for most capsule membranes, except

those manufactured using interfacial polymerization techniques [301,302].

Most appropriate for our purposes is the Skalak constitutive law, developed specifically for

modeling red blood cells [143,303] and has the ability to reproduce important microcirculatory

flow characteristics, such as the effective viscosity behavior and blunted velocity profile

discussed previously. Further, the Skalak law is highly versatile: its independent shear and

dilatation moduli have proven useful for modeling artificial capsules generally [296, 304]. For

nearly incompressible membranes, such as those of red blood cells, the dilatation modulus is

simply set to be very large. The Skalak model also displays a strain stiffening behavior, which

is considered typical for actual capsules [296,305]. Thus, we choose the Skalak constitutive

14



(a) Biconcave (b) Oblate ellipsoid (a/b = 0.5) (c) Sphere

Figure 2.1: Example capsule reference shapes as labeled.

model for our purposes. However, we note that our numerical scheme is only loosely tied to

this particular constitutive model, and this choice can be changed as necessary.

2.2 Skalak membrane constitutive model

The Skalak membrane model is given by its strain energy functional:

w =
Es
8

(
I2
1 + 2I1 − 2I2

)
+
Ed
8
I2
2 , (2.1)

where Es and Ed are the independent shear and dilatation moduli, respectively,

I1 = λ2
1 + λ2

2 − 2 and I2 = λ2
1λ

2
2 − 1, (2.2)

are the usual strain invariants [4, 303] and λ1,2 are the eigenvalues of the left Cauchy–Green

tensor V = F ·FT, where F is the surface deformation tensor. We enforce bending resistance

through a linear isotropic material model with modulus Eb [4, 306].

2.3 Membrane shapes

Herein, we will consider capsules of different reference shapes, including a biconcave disc for

the red blood cells of chapter 4, ellipsoidal for the capsules of chapter 5, and spherical for

the capsules of chapter 6; these are visualized in figure 2.1. Following Pozrikidis (2005), the

biconcave shape typical of a healthy red blood cell (discocyte) can be expressed in cylindrical

coordinates as

x = ro
β

2

(
0.207 + 2.003 sin2 φ− 1.123 sin4 φ

)
cosφ,

r = roβ sinφ,

(2.3)

which is based upon microscopic holographic measurements of actual red blood cells [307].

In (2.3), x and r are the axial and radial positions of the membrane, φ ∈ [0, π), β = 1.385,

and ro is the radius for a sphere of the same volume. The ellipsoidal reference shape we will
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use is expressed in Cartesian coordinates x = {x, y, z} as

(x
a

)2

+
(y
a

)2

+
(z
b

)2

= 1, (2.4)

where a/b is the aspect ratio; this gives ro = (ab2)1/3. For a/b < 1 the ellipsoid is called

oblate and for a/b > 1 it is prolate. Of course for a/b = 1 it is simply spherical. Both

the exterior and interior fluids are Newtonian and incompressible, with viscosity µ and λµ,

respectively.
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3 Numerical methods and solution

Details of the numerical methods used to solve for the flow of a model capsule system are

described herein. The most complex flow we will consider is shown in figure 3.1 and serves

as an example system for describing our methods.

3.1 Capsule surface representation

Capsule membranes are represented by spherical harmonics according to

x(θ, φ) =
M−1∑

n=0

n∑

m=0

P̃mn (sin θ)(anm cosmφ+ bnm sinmφ), (3.1)

where x is the capsule membrane, P̃mn are normalized Legendre polynomials,

P̃mn (x) =
1

2nn!

√
(2n+ 1)(n−m)!

2(n+m)!
(1− x2)m/2

dn+m

dxn+m
(x2 − 1)n, (3.2)

and anm and bnm are the coefficients of the expansion. The spectral description is advanta-

geous as a relatively small number of modes are required to accurately describe the capsule

shape and its derivatives, as well as for facilitating a nondissipative dealiasing method (for

which 3M spherical harmonic modes are carried) for nonlinear stability [4]. The orthogonality

of the spherical harmonic basis functions is particularly important for our linear stability

formulation (see section 4.2).

The spherical harmonic coefficients are represented compactly as ~s = {a(i,j)
nm , b

(i,j)
nm }, where

i = 1, 2, 3 is the vector coordinate direction index, j = 1, . . . , N is the capsule index, and

n ≥ m spectral expansion coefficient indices from (3.1), which together give a combined ~s

vector of length 3NM2. The corresponding discrete surface points are ~x = {x(i,j)(θk, φl)}
for coordinate direction i and capsule index j as computed by (3.1) over the unit sphere,

where θl ∈ (0, π) for l = 1, . . . ,M are the colatitudinal Gauss points, and φm ∈ [0, 2π) for

m = 1, . . . , 2M are the equally spaced longitudinal points. The forward and reverse discrete

spherical harmonic transforms can be expressed as

~x = B~s and ~s = B̃~x, (3.3)

where B and B̃ are 6NM2 × 3NM2 and 3NM2 × 6NM2 matrices representing (3.1)

applied at the collocation points. All transforms are computed using the SPHEREPACK

library [308,309].
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Si

µ

λµ

Figure 3.1: Schematic of a model flow configuration. Si are the surfaces of the N = 8 capsules and
no-slip tube wall, µ is the suspending fluid viscosity, and λµ is the interior capsule viscosity, which
we take to be the same for all capsules.

3.2 Governing equations and boundary integrals

The Reynolds number capsule flows is generally small compared to unity, so inertia is

assumed negligible in our formulation that is built upon the solution of the Stokes equations

with point force inhomogeneity,

0 = −∇p+ µ∇2u+ g δ(x− xo), 0 = ∇ · u, (3.4)

where p is the pressure and u is the velocity. A standard boundary integral method is used

to express (3.4) in terms of boundary integrals for the velocity [4, 159,310–312],

ui(xo) =
2

1 + λ
u∞i (xo)−

1

1 + λ

1

2πµ

∫

Ω

Gij(x− xo)∆σj(x)dS(x)

− 1− λ
1 + λ

1

2π

∫

Ω

Tijk(x− xo)uj(x)nk(x)dS(x),

(3.5)

for coordinate direction i = {1, 2, 3}. In (3.5), xo is a point on a surface, u∞ is the mean

flow in the [0, L1]× [0, L2]× [0, L3] rectangular computational domain, Ω = ∪iSi is the union

of all surfaces, ∆σ is the surface traction vector acting on the fluid, and n is the normal

vector to the surface. Note that when λ = 1, the last term of (3.5) vanishes and the equation

becomes explicit in u. Here, G and T are the so-called Stokeslet and stresslet Green’s

functions of the viscous-flow equations, the free-space representations of which are [159],

Gij(xo) =
δij
r̃

+
x̃ix̃j
r3

and Tijk(xo) = −6
x̃ix̃j x̃k
r̃5

, (3.6)

where δij is the Kronecker symbol, x̃ ≡ x− xo, and r̃ ≡ ‖x̃‖.
Direct computation of the Green’s functions is expensive, scaling as O(N2). For simula-

tions with many capsules, such as the example system of figure 3.1, this computation can be

prohibitively expensive. In these cases, fast summation methods are often used to improve

the computational efficiency. In our simulations we use the particle-mesh Ewald (PME)
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Figure 3.2: Schematic of an example cylindrical vessel

method, which splits the Green’s functions into short- and long-range components for more

efficient computation [4, 313], yielding an O(N logN) method (details of this method are

available in appendix A). The fast multipole method has also been used for this objective,

which groups long-range interactions for more efficient evaluation [314]. However, these

formulations are typically built upon the free-space Green’s functions, and are thus not

appropriate for the periodic many-capsule flows we will consider here.

The boundary integrals of (3.5) are then evaluated using a quadrature scheme for the

collocation points ~x [4], except for close interactions where a nearly-singular formulation of

the integrands is used [4, 315].

3.3 No-slip wall representation

In some flow configurations, such as that of figure 3.1, we model a microvessel as a no-slip

cylindrical surface. We represent this surface here by 6588 triangular mesh elements, as shown

in figure 3.2), with force density represented with second-order linear elements as determined

by a 7-point Gauss quadrature [159]. This mesh resolution has been shown to be sufficiently

dense for the capsule dynamics to be insensitive to it in similar simulations [4,110,144]. When

a capsule surface collocation point and wall point are very close, their interaction is singular

or nearly singular and computed through a Duffy quadrature rule [316]. A single-layer

potential, based on G, is used to enforce the no-slip condition by solving for the required

surface traction on the wall with a GMRES algorithm [4,317].

We note this representation of the wall surface traction is ill-conditioned, with the condi-

tion number of the corresponding linear system increasing with the wall mesh refinement [4].

This conditioning can likely be improved through preconditioning [318], though this is not

attempted here. For all reported simulations the maximum residual velocity is less than

10−4 within 100 GMRES iterations, which is sufficiently accurate for our purposes.
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3.4 Time-integration

Once the velocity ~u on the capsules is computed, the capsule surfaces are time advanced

according to

d~x

dt
= ~u(~x), (3.7)

or, in list form,

dx
(α)
i

dt
= u

(α)
i (~x) for i = 1, 2, 3; α = 1, . . . , 2NM2. (3.8)

This is integrated using a first-order explicit method with time step ∆t.

3.5 Volume constraint

Since both the interior and exterior fluids are modeled as incompressible, there should be

no change in capsule volume. However, small numerical errors can accumulate in long-time

simulations and pollute the solution. Our solution scheme addresses this through a variational

formulation as a constraint, which adjusts the membrane surface in its normal direction [4].

This formulation is an extension of that used by Freund (2007) [165], and nearly preserves the

capsule volume at every time step. Herein, reported simulations keep this adjustment below

0.001% of ro per time step, though the stability analyses we conduct are wholly independent

of this constraint.
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4 Red-blood-cell-train stability

The first capsule flow configuration considered is that of flowing red blood cell trains, as

introduced in chapter 1. For a study of a two-dimensional analog of this study, see appendix C.

The simulation setup and specific details of the numerical methods relevant for this system

are discussed in section 4.1. The time-stationary nonmodal linear stability formulation is in

section 4.2 and its application to red-blood-cell-trains in different flow configurations is in

section 4.3.

4.1 Simulation setup and details

4.1.1 Physical model system

The flow system is shown schematically in figure 4.1. It is a streamwise-periodic model

microvessel of diameter varying from D = 14 to 34 µm. This range includes cases for which

cells are observed to flow in both ordered and apparently chaotic fashion. Red blood cells,

modeled here as capsules, are initiated in their at-rest equilibrium biconcave geometry with

size ro = 2.82 µm, as described in chapter 2, with uniform spacing along the vessel center-line.

Cells are advected due to a flow of mean velocity U until they reach a steadily flowing train

of deformed cells. The stability of the cell train is expected to be sensitive to cell–cell spacing

(as seen in figure 1.3), which we quantify with φ ≡ roN/L, where N is the number of cells

and L is the periodic length of the vessel. We vary φ between 0.2 and 0.7. Most cases have

plasma viscosity µp = 0.0012 Pa s with matched cytosol viscosity µc = µp for convenience

and computation speed, however we also consider λ ≡ µc/µp 6= 1 in section 4.3.3.

The red blood cell model was described in chapter 2. Shear and bending moduli of

the membrane are taken as Es = 4.2× 10−6 N m−1 and Eb = 1.8× 10−19 N m respectively,

L (periodic)

D

Wall (no-slip)

Plasma µp

Cell cytosol µc = λµp

U

Figure 4.1: The model system.
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which are based on experimental measurements, as discussed previously [3]. Red-blood-cell-

membranes are known to be nearly incompressible, which is enforced here by a relatively

large dilatation modulus Ed = 67.7× 10−6 N m−1, and we confirm the growth rates of

section 4.3.2 are insensitive to this choice. Together, these parameters give a capillary

number Ca = µpU/Es, which can be interpreted as a ratio of advection to relaxation times

and is used as a measure of relative flow strength. The effect of changing Ca is studied in

section 4.3.4. Though this model includes significant simplifications relative to an actual

physiological blood flow, it is able to quantitatively reproduce the effective viscosity of

microcirculatory flow [4,144].

4.1.2 Numerical flow solution

The numerical methods used to solve for the flow were discussed in chapter 3; here, we

present the details specific to the red-blood-cell-train simulations.

The total mean flow velocity in the Ld × Ld × L rectangular computational domain is

u∞ = {0, 0, Û}, where we use Ld = D + 0.5, and Û is useful for setting the flow strength [4].

However, Û does not exactly match U , since there is also flow outside the cylindrical vessel.

Thus, U is determined by subtracting the flow rate outside the vessel from the total flow rate

L2
dÛ and dividing by the cross-sectional area of the vessel [4]. U is then dependent on Û and

the effective viscosity of the suspension within the vessel, though for the cases we consider

(U/D > 50 s−1) the effective viscosity of microcirculatory flow is known to be shear-rate

(U/D) insensitive [5]. In our computations we use Û = 2.3× 10−3 m s−1, and U/Û varies

from only 1.244 to 1.256. Further, in section 4.3.4 we demonstrate that the growth rates

we compute are only logarithmically sensitive to changes in Ca, and thus U . So, for our

purposes, we will use a nominal U = 1.25Û = 2.875× 10−3 m s−1 for non-dimensionalization.

Herein, the spatial resolution is given by M = 12, as defined in (3.1), though we verify

that the amplification rates of section 4.3 vary by only 1% for larger M . We use time-step

∆t = 0.0014 ro/U for constructing the base-flows of section 4.3.1, though our stability analysis

is wholly independent of time-integration and thus this choice. The no-slip condition on the

vessel-wall is enforced using the method of section 3.3; we ensure that the maximum residual

velocity of any cell collocation point when solving for the required wall surface traction is

less than 10−4U , typically requiring less than 100 GMRES iterations. We again verify that

the results of section 4.3 are independent of this choice.

4.2 Stability analysis formulation

4.2.1 Measure of configurational stability

To describe disturbances, we use a geometric displacement from the undisturbed uniformly

advecting base state,

ε(t) ≡ x(t)− xb(t), (4.1)
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where the base state denoted by subscript b is further described in section 4.3.1. A similar

strategy was used to study two-dimensional capsule trains, where displacements in the

membrane surface in physical space x quantified ε, though surfaces were represented using

Fourier methods [158]. Fourier methods are unitary, so describing ε with either physical

points or coefficients of the expansion are equally valid choices. However, the spherical

harmonic methods we use here do not share this property. Indeed only the harmonic-to-

physical space transformation can be computed unambiguously, as the physical-to-wave

space transformation is overdetermined. Since our construction is built upon disturbances

to ~ε, we instead base our formulation upon the spherical harmonic coefficients ~s:

~ε(t) ≡ ~s(t)− ~sb(t). (4.2)

By a generalization of Parseval’s theorem, the norm of ~x and ~s are equivalent up to a

constant [319], which is about 2.2 here, so we are ensured this is a proper measure for the

disruption of the cell train. Specifically, this magnitude is quantified by the L2 norm,

‖~ε‖2 =

3NM2∑

i=1

(εi)
2. (4.3)

This metric is still not unique, however, and is not expected to be for such a complex

system [234]. We note that an energy based metric, such as those often used for finite Re

flows, is not implemented here since zero-strain-energy disturbances can drive the system to

disorder through rigid-body-like tilts and translations [158].

4.2.2 Linearization

We linearize the fully-coupled flow system through direct evaluation of ~u according to (3.8)

for a disturbance to the spherical harmonic coefficients ~δ, which can be expressed

~u(~x+B~δ) = ~u(~x) +CB~δ +O(‖B~δ‖2), (4.4)

where C is unknown. Recasting (4.4) in terms of spherical harmonic coefficients and retaining

only linear contributions,

A~δ = B̃~u(~x+B~δ)− B̃~u(~x), (4.5)

where A is a square matrix that contains the first-order coupling of the base state to the

disturbance. We infer A by systematically perturbing the system, computing the velocity,

and performing the inverse spherical harmonic transform. Each column of A is computed by

disturbing one of the spherical harmonic modes α ∈
{

1, . . . , NM2
}

in one of the coordinate

directions i ∈ {1, 2, 3} and calculating B̃~u(~x +B~δ). For each calculation, only the (i, α)
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component of ~δ is perturbed by δ, such that

δβj =




δ for j = i, β = α

0 otherwise,
(4.6)

following the list notation of (3.8), which gives the (i, α) column of A as

A
(αβ)
ij =

B̃~u(~x+B~δ)βj − B̃~u(~x)βj
δ

for j = 1, 2, 3 and β = 1, . . . , NM2. (4.7)

Repeating this for each spherical harmonic coefficients and coordinate directions constructs

the full 3NM2 × 3NM2 matrix A. Since the spherical harmonic modes are mutually

orthogonal, even in in this formulation which exactly reflects the numerical discretization of

the cell shapes, we are ensured that this A describes the full linear dynamics of the system,

which is confirmed in section 4.3 for δ = 10−3, which is used in most of the calculations.

Once A is constructed, any sufficiently small disturbance ~ε is governed by

d~ε

dt
= A~ε, (4.8)

which has exact solution ~ε(t) = [expAt]~εo for initial condition ~ε(0) = ~εo.

4.2.3 Eigensystem analysis and verification

Matrix A is non-normal, as can be anticipated by the character of the vector Green’s function

of the Stokes operator, so in general it will not have a full set of orthogonal eigenvectors. As

a result, transient growth is possible and the largest real eigenvalue of A does not necessarily

correspond to the maximum growth rate at all times [234,320]. However, the eigensystem

of A nevertheless indicates the long-time asymptotic growth of small perturbations [235].

For ~λ(A) eigenvalues of A, the spectral abscissa of the system is its largest real component,

which bounds asymptotic growth,

α ≡ max
{

Re
[
~λ(A)

]}
. (4.9)

The corresponding eigenvector ~vα will amplify as eλαt for t→∞. Similarly, the transient

amplification rate for t→ 0+ is bounded by the nominal numerical abscissa [234,320],

η ≡ max

{
Re

[
~λ

(
A+AT

2

)]}
, (4.10)

with corresponding eigenvector ~vη.

Example eigenvalues of A are shown in figure 4.2. Similar to previous studies of two-

dimensional capsule trains, most have Re[~λ(A)] < 0 [158], and thus are asymptotically

stable, which is perhaps expected for this viscous system. However, three eigenvalues do

have positive real part, so the system is asymptotically unstable.

A comparison of the linear predictions ofA and corresponding direct numerical simulations

24



(a)

0−200−400−600
−0.4

−0.2

0

0.2

0.4

Im
[~ λ
(A

)]

(b)

−3 −2 −1 0
−0.4

−0.2

0

0.2

0.4

Re[~λ(A)]
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)]

Figure 4.2: (a) Eigenvalues of A for a two cell case with D = 10ro, φ = 0.2, and viscosity ratio
λ = 5. (b) a magnification of (a) as indicated.

10−3 10−2 10−1 100 101

10−3

10−2

A

B C

D

E

ε̂

t U/ro

‖~ ε
(t
)‖
/r
o

(A) ε̂ exp ηt

(B) ε̂ exp(At)~vη
(C) ε̂~vη i.c., DNS

(D) ε̂ expαt

(E) ε̂~vα i.c., DNS

Figure 4.3: Verification of the example case with D = 10, φ = 0.2, and viscosity ratio λ = 5
for initial disturbance amplitude ε̂ = 10−3. Linear predictions of A and DNS of the same initial
conditions agree within plotting precision.
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(a) D = 6, φ = 0.2 (b) D = 6, φ = 0.7

(c) D = 10, φ = 0.2 (d) D = 10, φ = 0.7

Figure 4.4: Example base configurations for D = 6 and 10 and φ = 0.2 and φ = 0.7.

(DNS) are shown in figure 4.3. While the growth determined by the numerical abscissa

ε̂ expαt bounds transient growth for t→ 0+, it is clear from figure 4.3 that the growth of this

disturbance reverses after a relatively short time and decays below the most asymptotically

amplifying disturbance ~vα by t = 0.2U/ro. This non-monotonic behavior matches the matrix

exponential ε̂[expAt]~vη, which serves as a verification of its behavior at later times, as shown

in figure 4.3. The growth of ~vα and its linear prediction match within plotting precision of

all times.

4.3 Results

4.3.1 Base cases

Flows in different tube diameters D and packing φ are simulated to obtain a base state.

These simulations are run until the maximum wall-normal velocity of any cell collocation

point is less than 10−4U . Example steady base configurations are shown in figure 4.4. We

focus on trains as shown with N = 8 cells; doubling N affects the unstable eigenvalues

we identify by less than 1%, consistent with the short streamwise wavelengths on these

maximally amplifying perturbations.

4.3.2 Matched viscosity ratio λ = 1

Extensive cases with λ = 1 are discussed in this section. The effect of λ 6= 1 is investigated

for select cases in section 4.3.3.

Asymptotic behavior

As discussed in section 4.2, the long-time most amplifying growth of a disturbance to the

cell train is given by the spectral abscissa. In the context of a cell train flowing through a

microfluidic device, this growth gives a lower bound for the distance the train must travel

before a small perturbation becomes large, and thus is valuable in these applications.
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(i) (ii)
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6

8

10
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φ

D
/r

o

α ro/U = const.

< 10−3 10−2 10−1

α ro/U

(a)

(iii) D = 10ro, φ = 0.2 (iv) D = 10ro, φ = 0.7

(i) D = 6ro, φ = 0.2 (ii) D = 6ro, φ = 0.7
(b)

Figure 4.5: (a) Spectral abscissa α for a range of D and φ. The curves of constant α show a region
of apparent marginal (or near-marginal, see text) stability. (b) Example ~vα for cases (i)–(iv) as
labeled in (a), magnified for visualization as ~s + 10~vα. The wrinkled appearance of (i) is due to the
magnification of an otherwise small shape disturbance.
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The dependence of α on D and φ is visualized in figure 4.5 (a). For φ = 0.2 the system is

unstable with α ≈ 10−1U/ro for all tested diameters D, though the modestly smaller α for

larger D suggest that increased cell–wall interaction is destabilizing. For this α and flow rate,

a disturbance would amplify by a factor of 10 after flowing distance 30ro, The more packed

cases with φ = 0.7 also have α ≈ 10−1U/ro for all D. However, for intermediate φ, growth

is suppressed. That is, α increases with φ when φ > 0.55 for any D, suggesting that cell–cell

interactions themselves are most important in these cases. For D . 10ro and 0.4 . φ . 0.55

we fine α < 10−3. Unfortunately, this is inconclusive, limited by the δ = 10−3 used to

construct A (as formulated in section 4.2). Smaller δ, better converged base states, and

high resolutions would all likely be necessary to determine these α more precisely, though

this would challenging and likely unimportant in terms of the general conclusions. For

α = 10−3U/ro, the corresponding streamwise distance required for a disturbance to grow

from ε̂ = 10−3ro to ro is ∆z & U log(ε̂−1)/α ≈ 138 000ro. Thus, it is sufficient to designate

these cases to be marginally stable for our purposes. Their exponential amplification is

markedly slower than the more obviously unstable cases we identify.

The corresponding disturbances are visualized in figure 4.5 (b) for select cases. Both the

φ = 0.2 cases have a uniform rotational disturbance, also seen for some two-dimensional

capsule trains [158]. In contrast, disturbances associated with the φ = 0.7 are wave-like,

thought with only two cells per wave length. These seem to involve a combination of capsule

translations and rotations.

Transient behavior

The numerical abscissa η is shown in figure 4.6 (a) for the same range of D and φ, for which

it varies by about a factor of four, generally increasing with larger D and φ. This general

behavior is similar to that for short, two-dimensional capsule trains, though it is insensitive

to the periodic streamwise length of the tube, unlike in two dimensions.

The disturbances themselves shown in figure 4.6 (b) for select cases, and all are wave-like.

In both the sparse φ = 0.2 cases, a wave length has Ñ = 2 and the disturbances are

asymmetric in this case. Both of the more packed φ = 0.7 cases have Ñ = 4, and in contrast

are asymmetric for D = 6ro and symmetric for D = 10ro. These disturbances are similar in

character to some of the (more extensively mapped) disturbances found for two-dimensional

capsule trains [158], though without the apparent dependence on domain length found in

that model configuration.

Although the transient growth rates of figure 4.6 are large, such that the disturbance would

increase by a factor of 10 after traveling distance 0.4D, this growth does not necessarily persist

for small perturbations. Figure 4.7 shows the time evolution of example most-amplifying

transient and asymptotic disturbances with ε̂ = 0.1ro. Transient growth is consistent with

the linear prediction for short times, although it quickly decays with ‖~ε‖ < ε̂ by the time

the cells have advected distance ≈ D. These cases were selected because of their relatively

large η, as seen in figure 4.6 (a), and the failure of such disturbances to trigger nonlinear

interactions suggests a subservient role of the transient mechanism for small perturbations.

In the analogous two-dimensional configuration, many transiently growing disturbances were
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Figure 4.6: (a) Numerical abscissa η. Solid black lines denote an approximate curve of constant η,
as labeled. (b) Example ~vη for cases (i)–(iv) visualized as ~s + 10~vη. Their kinky appearance is due
to linear magnification of an otherwise small shape disturbance.
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(a) D = 10ro, φ = 0.2
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Figure 4.7: Time evolution of ‖~ε(t)‖ for the most amplifying transient and asymptotic amplifying
disturbances and their linear predictions are shown with relatively large ε̂ = 0.1 initial disturbance
for cases (a) D = 10ro, φ = 0.2 and (b) D = 10ro, φ = 0.7. Linear predictions of ~vα remain good
for long times as expected, though transient disturbances ~vη undergo rapid decay.
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Figure 4.8: Cell-averaged deformation spectra for ~vα and ~vη for the case D = 10ro and φ = 0.7.
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Figure 4.9: Time evolution of ~vα and an ad hoc disturbance ~va.h. with ε̂ = 0.1 and its associated
DNS for cases with D = 10ro and φ = 0.2 and 0.7.

found to amplify to the point of nonlinear saturation [158]. DNS of such two-dimensional

cases, disturbances amplified by a factor of 10 in less than two channel-widths of streamwise

travel. In contrast, no such persistent transient growth was found here for blood cells.

Differences in the character of the disturbances for the most asymptotically and transiently

amplifying disturbance can be quantified by their spherical harmonic spectrum:

En =
1

N

N∑

j=1

n∑

m=0

(|a(j)
nm|2 + |b(j)

nm|2), (4.11)

where a
(j)
nm and b(j)

nm are the spherical harmonic coefficients of the disturbance to cell j for

the disturbance ~v. In figure 4.8 we see that the ~vα are significantly smoother by this measure.

The corresponding low-order moment contributions to the hydrodynamics away from any

particular cell, might therefore be expected to be longer range, than the relatively broader

spectrum of the ~vη modes. These are anticipated to be more hyrodynamically local, and we

will also see that they carry significant strain energy.
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Nonlinear saturation

Direct numerical simulation (DNS) shows the nonlinear development of these linear per-

turbation, leading to a disordered flow. Examples results are shown in figure 4.9, where

they are compared with the their respective linear growth rates α. We see that the initial

perturbations displace cells such that they are closer to the tube wall, where the flow is

retarded. The relative slowing of these cells both affects the cell–cell spacing and seems to

rotate them out of the train. Once this rotation becomes sufficiently large, they overturn

and an apparently random long-time behavior is observed.

For comparison, the time evolution of an ad hoc translational disturbance ~va.h. is shown.

This is manufactured by a randomly displacing the cells, without deformation, in each

coordinate direction. This amplifies slower than ~vα by a factor of 4.3 for φ = 0.2 and 2.7 for

φ = 0.7.

4.3.3 Effect of viscosity ratio λ

A healthy, newly-formed red blood cell is thought to have a cytosol viscosity λ ≈ 5 times that

of blood plasma [14], and this might increase as the cell ages [321–323]. Here, we consider

both a λ = 5 nominally physiological case, as well as more extreme variations, including

some unphysiological reduced cytosol viscosities. The base states of figure 4.4 still apply.

The asymptotic growth is increased for λ = 5, as seen in figure 4.10, except for the

relatively sparsely spaced cases with φ . 0.3. For larger φ, elevated λ = 5 increasing α

by about a factor of 4 over the corresponding λ = 1 case. In contrast to the asymptotic

behavior, η is suppressed by a factor of about 2 for λ = 5. We will see in section 4.3.6 that

the shape-deformations associated with transient growth involve significant elastic strain

energy, and speculate here that such disturbances decay more rapidly for larger λ due to

larger viscous dissipation within the cell, and thus a smaller disturbance to the exterior flow.

Disease can alter the cell interior viscosity through deoxygenation [324, 325], and the

exterior viscosity can be readily changed by altering the suspending fluids. Thus, we also

consider λ = 0.1 up to 100 here. Spectral abscissa α is shown in figure 4.11 for these

cases. For φ = 0.2, increasing λ from 1 to 100 only increases α by about 10% for the cases

shown. Once λ is sufficiently large, λ ≈ 20 for the cases considered, α plateaus and it would

seem that the cells effectively behave as rigid-bodies, as far as their stability is concerned.

Interestingly, when λ is decreased from unity, the train is also more unstable. While this

non-monotonic change in α is striking, the relative change is small for φ = 0.2, likely due to

the large distances between the cells. However, when the cell train becomes more densely

packed, as for φ = 0.7 in figure 4.11 (b), α is more sensitive to λ. Again, a non-monotonic

behavior is observed, with λ ≈ 1 seemingly the most stable. An approximate plateau in α is

also observed in this case for λ & 20.

The deformation spectrum En of ~vα for cases of various λ is shown in figure 4.12. For

larger λ, En decreases more rapidly with n. This is expected as the more viscous interiors

cause the cells behave more like rigid objects in the low-viscosity suspending fluid, and

likewise the associated disturbances are more like rigid-body motions, with energy more

confined to lower-order modes.
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Figure 4.10: (a) Spectral and (b) numerical abscissa for λ = 1 and 5 and D = 8ro and 12ro as
labeled for various φ.
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Figure 4.11: Spectral abscissa α for 0.1 ≤ λ ≤ 100 for (a) φ = 0.2 and (b) φ = 0.7 for a range of λ.
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Figure 4.12: Cell-averaged deformation spectra for ~vα for the case D = 10ro, φ = 0.7, and λ as
labeled.

(a) Ca = 0.4

(b) Ca = 20.5

Figure 4.13: Cell trains with D = 8ro for the (a) smallest (Ca = 0.4) and (b) largest Ca (Ca = 20.5)
we consider.

4.3.4 Effect of flow strength Ca

Flow strength Ca ≡ µU/Es is adjusted from 0.4 to 20.5, to understand its affect away from

the Ca = 0.66 of the previous sections. The baseline configurations for the Ca extremes are

visualized in figure 4.13..

The results are shown in figure 4.14. For φ = 0.2, α decreases significant with Ca. Larger

Ca results in more deformed cells, and thus a larger distance between the cells and the vessel

wall, and comparatively smaller cell–wall interaction. Larger D, and thus smaller cell–wall

interaction, was shown to have smaller α for φ = 0.2 in section 4.3.2, which is consistent

with this result.

In contrast, φ = 0.7 are more unstable with increasing Ca, consistent with the results

for two-dimensional capsule trains [158]. Larger Ca results in a smaller cell–cell spacing,

which resulted in larger α (when increasing φ) in section 4.3.2 and is thus consistent with

our result here.
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Figure 4.14: Spectral abscissa for cell trains of diameters D = 8ro and 10ro, packing fractions (a)
φ = 0.2 and (b) φ = 0.7, and λ = 1 for a range of Ca. Vertical dashed lines indicate the Ca = 0.66
used previously.
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Figure 4.15: Example red blood cell equilibrium shapes for various levels of inflation and deflation,
given by their reduced volume v. The reference healthy red blood cell used in previous sections has
v = 0.64.

4.3.5 Effect of cell reduced volume v

Diseased or infected red blood cells often have modified shapes. Sickle or anemic cells

are deflated [326], while elliptocytes and spherocytes are inflated examples of red blood

cells [327, 328], so their stability in the context of a cell train is potentially important in the

design of microfluidic devices used to operate on them. More generally, artificial capsules

can be manufactured with a wide range of volumes [33]. Further, previous studies have

shown the important effects such diseased or transformed cells can have on such flows in

confinement [132, 329]. Here, we investigate the role of the cell geometry in the stability

of the cell train by artificially inflating and deflating the biconcave reference configuration,

otherwise matching the mechanical description of section 4.1.1.

In our simulations, we initiate a biconcave cell of increased (inflated) or decreased (deflated)

volume V but the same membrane surface area as a healthy red blood cell. Healthy red

blood cells have a reduced volume v ≡ V/Vo ≈ 0.64 [330], as used in the previous sections.

We vary v from 0.4 to 1, with the resulting basic shapes visualized in figure 4.15. Though

they retain their biconcave structure, deflated cells v < 0.64 are increasingly flat, while cells

of v > 0.64 have increasingly round shapes and lose their biconcavity for v ≈ 0.9. Base-flow

configurations for extreme cases are visualized in figure 4.16.

Figure 4.17 shows the spectral abscissa α for a range of parameters. It is not obvious how

to compare cases, since the more inflated cells, at the same centroid-to-centroid spacing have

closer membrane-to-membrane spacing. Since their shapes depend in complex fashion upon
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(a) v = 0.40

(b) v = 0.86

Figure 4.16: Visualization of cell trains with D = 8ro and φ = 0.7 for the (a) smallest and (b)
largest v we consider in this case.

v and Ca, we choose to retain the definition φ ≡ roN/L for making comparisons, though

aware that membrane-to-membrane generally decreases with increasing v.

The widely spaced cases with φ = 0.2 are maximally unstable for v ≈ 0.55 for D = 8ro

and v ≈ 0.52 for D = 12ro, with increasing stability for larger and smaller v. For φ = 0.7, α

monotonically increases with v, which can be anticipated by the decrease in cell–cell spacing

and thus increase in importance of cell–cell interactions for increasing v, which was shown to

be asymptotically destabilizing in sections 4.3.2 and 4.3.3 for healthy red blood cell shapes.

4.3.6 Disturbance strain energy

Our stability measure of section 4.2 is based on geometric displacement. However, it does

not afford a direct assessment of the perturbation strain energy, which for cell j is [4, 306]

Wj =

∫

Cj

[
Es
8

(
I2
1 + 2I1 − 2I2

)
+
Ed
8
I2
2 +

Eb
2

(b− bR)2
i

]
dS, (4.12)

where Cj is the surface of the cell, I1,2 are the usual strain invariants, b are the principal

curvatures as discussed in section 4.1.1, and superscript R denotes the reference shape. The

contributions of shear, dilatation, and bending resistance to W are denoted as Ws, Wd, and

Wb, respectively. We report the cell-averaged strain-energy perturbation as

W ′ =
1

ε̂N

N∑

i=1

(Wi −WB
i ), (4.13)

where WB
i is the strain energy of a cell in the base state. Example numerical results are

listed in table 4.1.

The most amplifying transient disturbances carry markedly more strain energy than

asymptotic ones [158]. Further, we note that for the cases of table 4.1 all transiently unstable

disturbances, not just the most amplifying, have W ′ > 0.6. This suggests that the transient

mechanism entails membrane deformation. In contrast, the asymptotic modes have strain

energy comparable to the linearization approximation made in our stability formulation. In
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Figure 4.17: Spectral abscissa α for cell trains of various D and packing fractions (a) φ = 0.2 and
(b) φ = 0.7 for a range of cell reduced volumes v with λ = 1. Vertical dashed lines indicate the
healthy red blood cell geometry v = 0.64. In (b) the shaded regime v > 0.86 indicates states which
do not fit in the train without self-intersecting.

D/ro φ W ′α W ′η = W ′η,s + W ′η,d + W ′η,b
6 0.2 1.13× 10−2 2.48 0.43 2.01 0.04
6 0.7 4.29× 10−3 2.42 0.74 1.52 0.16
10 0.2 9.16× 10−3 1.95 0.59 1.31 0.05
10 0.7 3.95× 10−3 4.91 0.43 4.25 0.23

Table 4.1: Strain energy for most amplifying transient, W ′η, and asymptotic W ′α disturbances
for a λ = 1 cell train of select vessel diameters D/ro and packing fractions φ. All W ′ are
nondimensionalized by ro, U , and µ. All are computed for a ε̂ = 10−3 perturbation.
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all cases, the dilatation part W ′η,d of the transient strain energy disturbance is largest and the

bending part W ′η,b is smallest, perhaps owing to their relatively large and small moduli, Ed

and Eb, respectively. We confirm that the results of section 4.3.2 vary < 2% when doubling

Ed, so we are ensured that the stability is insensitive to the relatively large Ed chosen in

section 4.1.1. The smallest W ′η in table 4.1 provides as an estimate of the strain energy

required to form the most amplifying transient disturbances. The quoted value corresponds

to Ŵ ′η & 6 × 10−18 J, which is more than 103 times larger than kT = 4.3 × 10−21 J for

T = 37◦C, and so only disturbances with ε̂ < 10−3ro are expected to arise via thermal

fluctuations. This is consequential, since the results of section 4.3.2 suggest that even ε̂ = 0.1

is insufficient to trigger a nonlinear transition. Thus, is seems that transiently amplifying

disturbances are unlikely to form spontaneously, and they are thus unable to trigger nonlinear

dynamics. The most amplifying asymptotic modes do not share this constraint.

4.4 Conclusions

We see that the cell-train stability landscape is complex. For some parameters, the train is

found to be t → ∞ marginally stable, at least to within the precision of our calculations,

which would correspond to vary long flow length. For larger tube diameters or sparse or

dense cell-cell spacing in narrow tubes, many cases are found to be asymptotically unstable

with qualitatively different forms of the most amplifying disturbances, including cell rotations

and translations.

Transiently amplifying disturbances were identified for all cases in our parameter study.

Many of these amplify thousands (or more) times faster than the corresponding asymptotically

amplifying modes. However, they are unlikely to occur spontaneously as they require

significant strain energy to form, and the subsequent growth is for to be so transitory that

they are not expected to grow to the point of significantly nonlinearity. This is in contrast

to the two-dimensional capsule trains of a previous study [158], for which the corresponding

transient modes were able to trigger a nonlinear mechanism for small perturbations.

Larger cell-interior viscosity was found to increase the amplification rate until λ ≈ 20

where the rate of amplification appears to saturate, seeming to reach a rigid-body-like

behavior in this high-viscosity limit. Changing the reduced volume of the cells leads to a

similarly rich behavior on the train stability; deflating the cells resulted in a less unstable

cell train for the nearly jammed φ = 0.7 cases we considered, and a more unstable train

for the more sparse φ = 0.2 cases. Transient instabilities we identified took the form of cell

membrane deformations, which corresponded to finite strain energy disturbances, compared

to the nearly zero strain energy disturbance of the asymptotically amplifying modes.

These results suggest that the train packing fraction, tube diameter, and cell interior

viscosity and volume can be selected to mediate instability of the train, and thus provide a

route to the improved design of microdevices used to process cells or capsules sequentially.
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5 Stability of capsules in
homogeneous shear flow

We next turn our attention to a time-dependent capsule flow system and consider an

ellipsoidal or spherical capsule as it periodically swings or rolls in a homogeneous shear flow.

The specific model system and simulation details are discussed in section 5.1.1. We verify

that our simulations reproduce particular results of previous studies in section 5.2; these also

provide the time-periodic base flows for subsequent Floquet analysis. The stability analysis is

extended from that of section 4.2 to include a time-periodic base flow in section 5.3. Results

for a range of flow strengths are shown in section 5.4

5.1 Simulation setup and details

5.1.1 Physical model system

The model flow system is shown in figure 5.1. The capsule is initiated as an ellipsoid with

principal-axis half-lengths {a, a, b} in the {x, y, z} directions, as detailed in chapter 2. The

capsule length scale is given by ro = (ab2)1/3, which is the radius of a sphere of the same

volume. The capsule perturbs a homogeneous shear flow,

u∞(x) = γ̇y x̂, (5.1)

where γ̇ is the shear rate. Following Dupont et al., we define ξ and ζ as the angles the

shortest capsule principal axis and the point initially located at tip of the shortest principal

axis make with the ẑ axis, respectively; corresponding points on the capsule are labeled as pζ

and pξ in figure 5.1. Both the interior and exterior fluid are Newtonian and incompressible

with the same viscosity µ. We take the membrane shear, dilatation, and bending moduli as

Es, Ed = CEs, and Eb = 5× 10−3Esr
2
o, respectively, except for select cases in section 5.2,

where Eb = 0 is used for comparison with other studies. These parameters are used to define

an elastic capillary number Ca = 2γ̇µro/Es, which serves as a measure of flow strength. The

factor of 2 is included so that our definition matches previous studies [200,297].

5.1.2 Numerical flow solution

The numerical methods used to solve for the flow were described in chapter 3. We note

that here, the free-space Green’s functions are used since there is the flow is not spatially

periodic and there is only one capsule; thus, all interactions are computed directly. The

spatial resolution is given by M = 6, though we confirm the growth rates of section 5.4 are

independent of this choice. The time step used when constructing the base-flow motions of
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Figure 5.1: Schematic of the homogeneous shear flow model system.

section 5.2 is ∆t = 10−3T , where T is the period of the capsule motion as defined in that

section.

5.2 Cycles of capsule motion

We simulate time-periodic cycles of the physical capsule membrane motion for cases with Ca,

C, and a/b values selected to match commonly studied configurations, which also serves to

facilitate verification of our numerical method and stability formulation. First, we simulate a

spherical capsule (a/b = 1) and compare with Lac et al. The capsule motion and deformation

are quantified by the Taylor parameter,

Dij(t) ≡
|Li(t)− Lj(t)|
Li(t) + Lj(t)

for i, j = 1, 2, 3, (5.2)

where Li are the (decreasing with i) principal axes of the linear least-squares fitted ellipsoid

of the capsule, the inclination angle Φ of the long-axis L1 with respect to the flow direction

x̂, and the period of the capsule rotation T . The period is quantified by determining the

smallest T such that ‖~s[t]− ~s[t+ T ]‖ < 10−3, where ‖·‖ is the L2 norm. Steady values are

denoted by D∞ij and Φ∞, and are determined when their value varies < 0.1%.

Figure 5.2 shows that these values match closely with those of Lac et al. [297]. In

these cases we do not include membrane bending resistance (Eb = 0), consistent with their

study [297]. As a result, the capsule membrane buckles [201,297,331,332]. This buckling

appears with short wavelength, often at the scale of the numerical discretization, and as

such can pose resolution difficulty and sensitivity to the chosen numerical method and

discretization [200, 331]. However, this sensitivity is not seen in figure 5.2 for a spherical

capsule, where our results match those found through a finite element description of the

membrane [297]. Oblate capsules (a/b < 1) are known to be particularly sensitive to buckling,

as large compressive zones can form on the membrane [331]. We next consider such oblate

capsules, which will also serve as our reference configuration for stability analysis.

We verify different base configurations, comparing with Dupont et al., as shown in

figure 5.3 [200]. Here, the principal axis angles ξ(t) and ζ(t) are only similar to their reported
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Figure 5.2: Verification of long-time (a) Taylor parameter, (b) inclination angle, and (c) rotation
period (see text) with Lac et al. for a/b = 1 and indicated Ca and C.
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Figure 5.3: Cases with a/b = 0.5, C = 1, Eb = 0, and Ca = 0.3: (a) ζ(0) = 30◦ and 75◦, (b)
ξ(0) = ζ(0) = 30◦.
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results, especially when tγ̇ . 300. However, for t & 400 our results approach the same values,

ζ = ξ = 90◦. We hypothesize the small differences for tγ̇ . 300 are due to differences in the

numerical methods. Particularly relevant for oblate capsules which do not resist bending

and buckle at the wavelength of the spatial discretization, the finite element methods of

Dupont et al. have intrinsic numerical dissipation and artificial membrane stiffness at the

length scales of the discretization [198], of which our methods do not. However, the exact

role of membrane buckling on the capsule motion, and thus ζ(t) and ξ(t), is unknown. We

confirm that our results for tγ̇ . 300 are insensitive to our choice of N to within 3%, and we

note that the agreement for long times is most important for the primary objectives of our

stability analysis.

With this verification against previous studies, we focus on cases with a/b = 0.5, C = 1,

and Ca ranging from 0.05 to 5, commensurate with previous empirical studies of capsule

stability [200]. We use a relatively small Eb = 5× 10−3Esr
2
o, which suppresses any obvious

short-wavelength buckling discussed previously, and is thus consistent with the lack of such

buckling in experimental observations [331]. It also facilitates a well resolved linear stability

analysis, as discussed in section 5.3. Capsules are initiated with ζ(0) = ξ(0) = 30◦, and

advanced according to (3.8) until ‖~s[t]− ~s[t+ T ]‖ < 10−3 for some period T .

10−1 100

Ca

Swinging Rolling

Figure 5.4: Character of capsule motion for a range of Ca.

(a)
Ca = 0.05
Swinging

(b)
Ca = 1.0
Rolling

t = 0 T/8 T/4 3T/8

x̂

ŷ

pζ pξ px̂−ŷ

Figure 5.5: Visualization of capsule over one half-period for example cases as labeled. We introduce
px̂−ŷ as a tracker point on the membrane in the shear-plane for illustration of its motion.

Figure 5.4 shows the swinging (Ca < 1.0) and rolling regimes (Ca ≥ 1.0) of the base

periodic capsule, example cases of which are visualized in figure 5.5. Note that no “wobbling”

motion is observed here. Wobbling has been observed in certain cases [200], but is known to

be sensitive to the flow description, particularly the initial capsule shape and the viscosity

ratio between the interior and exterior fluids. Some reports of ẑ-axis wobbling have proved to

be only transient, with the apparent actual long-time behavior being a swinging motion [191].
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The present analysis is, in part, motivated by more direct analysis of these long time scales.

We confirm the behaviors identified in figure 5.4 are insensitive to both the length of our

simulations, which are more than five times longer than those of Dupont et al. (tγ̇ ≈ 8000),

and N . These time-periodic base flows are analyzed with Floquet analysis in the next section.

5.3 Floquet stability analysis formulation

Our stability formulation extends that developed to analyze steadily flowing red-blood-cell-

trains [137] as discussed in section 4.2, to include the time-periodic base flow. Thus, we do

not repeat this description in full detail, though we emphasize that our method depends

upon the orthogonality of the spherical harmonic coefficients ~s. The linearization proceeds

by introducing ~δ[t] as a small perturbation to ~s[t]. Expanding (3.8) and retaining linear

terms in ~δ[t] yields:

A[t]~δ[t] = B̃{~u(B[~s[t] + ~δ[t]])− ~u(B~s[t])}. (5.3)

A full-rank orthogonal set of disturbances ~δi gives each column i of matrix A[tj ] at time

tj , the details of which have been discussed elsewhere [137,158]. We use ‖~δ[t]‖ = δ = 10−3,

and confirm insensitivity to this numerical parameter. We evaluate A[tj ] at 104 uniformly

spaced times tj ∈ [0, T ), and confirm that the results are also insensitive to this choice. Note

that this is a 10 times finer temporal discretization than the corresponding simulations that

provide the base state. The evolution of any small disturbance to the spherical harmonic

coefficients ~ε[t] is then governed by

d~ε[t]

dt
= A[t]~ε[t] (5.4)

where A[t] has period T , and thus (5.4) is a canonical Floquet problem. The solution to

(5.4) can be expressed as

~ε[t] = X[t]~εo, (5.5)

where X[t] is the fundamental solution operator, which can rarely be determined analytically,

even for simple problems. Following usual procedures, we assume that ~ε[t] has the form

~ε[t] =
n∑

i=1

ci~pi[t] expµit, (5.6)

where ci are constants, µi are exponential growth rates, and ~pi[t] are unknown periodic

functions. Periodicity requires

X[t+ T ] = X[t]X−1[0]X[T ] = X[t]C, (5.7)
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where C is the monodromy operator. Substitution of (5.7) into (5.5) provides the propagation

of X[t],

dX[t]

dt
= A[t]X[t]. (5.8)

It is established that the properties of the linear system can be determined independently of

the initial condition X[0]; we follow the usual practice of selecting X[0] = I, in which case

C = X[T ] is the principal fundamental matrix. In our calculations X[T ], and thus C, is

found by integrating (5.8) using the trapezoidal rule, which is chosen to exactly preserve

time reversibility and avoid numerical dissipation. The eigenvalues ρi of C are the Floquet

multipliers and can be interpreted as the factor of growth or decay of ‖~ε[t]‖ over a period;

|ρi| > 1 indicates unstable modes.

5.4 Results

The monodromy matrix C and its eigenvalues are computed for the periodic flow of the

a/b = 0.5 and C = 1 capsules of section 5.2, which identifies nominal Floquet modes and

quantifies their stability.

0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2
ρo

ρo

ρ−

Re (ρ)

Im
(ρ
)

Figure 5.6: The spectrum of C for Ca = 1.4. Neutrally (ρo) and modestly (ρ−) stable modes are
labeled.

The Floquet multipliers of an example case are shown in figure 5.6. These indicate a

complex conjugate pair of neutrally stable multipliers |ρo| ≈ 1 and a modestly decaying

multiplier ρ− ≈ 0.84, which have associated eigenvectors ~vo and ~v−, respectively. Neutrally

stable multipliers are only determined within the accuracy of our methods, which for for

this case is within ρo = 1± 10−2. This is a result of the approximations introduced by the

finite δ used when constructing A, the finite number of A[t] used to discretize the temporal

period T for determining C, and the precision of the periodic base flow motion. With this

constraint, were a truly unstable mode to exist within our tolerance, it would require at least

t > 700T to amplify from an initial disturbance amplitude ε̂ = 10−3 to unity, so we refer to

them as neutrally stable in our discussion. All other Floquet multipliers of figure 5.6 have

|ρ| ≈ 0, with their associated disturbances vanishing (within the accuracy of our methods)
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well before a single period T . We select one of these |ρ| ≈ 0 modes and labeled it as ~vb to

illustrate its behavior subsequently.

10−1 100 101 102
10−4

10−3

(i) ~vo

(ii) ~v−
(iii) ~vb

(iii) (ii)

(i)

T γ̇

tγ̇

‖~ ε
(t
)‖
/r

o
ε̂~vρt/T ε̂~v i.c., DNS

ẑ

x̂

(1)

(ii) ~v−

(iii) ~vb

(a) (b)

Figure 5.7: (a) Linear prediction and DNS of example Floquet multipliers as labeled over several
periods for the Ca = 1.4 case. (b) Associated eigenvectors (ii) ~v− and (iii) ~vb, magnified for
visualization as ~s[0] + 5~v.

Figure 5.7 (a) shows agreement between the linear theory and DNS for the ~vo and ~v−
modes, which serves as a verification of our analysis. Note that our analysis only attempts

to predict the behavior of ‖~ε(t)‖ at integer multiples of the period, so we only include the

DNS evolution at these time intervals for clarity. The DNS of the ~vb mode shows a quick

decay before the first period has elapsed, seemingly prohibiting a prediction of its behavior

with our analysis. However, this is unimportant for stability purposes as it is an obviously

stable mode.

The eigenvectors ~v− and ~vb, shown in figure 5.7 (b), appear as a tilt of the capsule about

the ŷ axis and an unstructured deformation of the capsule, respectively. The quick decay of

~vb is then expected, as the disturbance dissipates primarily due to elastic, not hydrodynamic,

effects. Eigenvector ~vo is simply a rotation of the capsule in the shear-plane (x̂–ŷ, here),

and so its neutral stability is unsurprising and not revealing of any particular behavior.

48



Swinging Rolling

10−1 100
0

0.5

1

Ca

|ρ
i|

ρ−: Modestly stable
ρo : Neutrally stable

|ρ| ≈ 0 : Rapid decay

Figure 5.8: Floquet multipliers for a range of Ca.

We identify neutrally and modestly stable Floquet multipliers for all Ca considered, as

shown in figure 5.8. Again, all other multipliers have |ρ| ≈ 0, dissipating before a period

has elapsed. Thus, we conclude that the flow is neutrally stable within the accuracy of our

methods for all cases. The associated eigenvectors for each case have the same character

as those described previously. For the weakly damped disturbances, ρ− decreases with

increasing Ca within each of the flow regimes (swinging or rolling), which can be anticipated

as it has been observed that as flow strength increases, perturbations to the stable flow decay

more quickly [200]. An apparent discontinuity in ρ− appears at Ca = 1, which is expected

as the flow qualitatively from swinging to rolling at this value.

5.5 Conclusions

We formulated a Floquet stability analysis for the swinging and rolling motions (for varying

Ca) of oblate capsules in homogeneous shear flow. This was undertaken to clarify their

long-time behavior given the challenges of actually performing long-time simulations. For

each case, a set of rapidly decaying modes with |ρ| ≈ 0 were identified, which dissipated

before one period elapsed. A modestly stable mode that decayed over several periods was

also identified in each case; its behavior was reproduced through direct numerical simulations

and served as a verification of our methods. Finally, an approximately neutrally stable mode,

within the accuracy of our methods, was identified. The absence of an unstable mode in any

of the cases we considered confirms that the capsule flow motions are indeed stable.
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6 Stability of a capsule in large
amplitude oscillatory extension

The model system we investigate is introduced in section 6.1.1 and the numerical methods

used to solve for the flow are described in section 6.1.2. In section 6.2 we present our

construction of the time-periodic base-flows for analysis. We verify our stability analysis

through direct numerical simulations (DNS) and assess the capsule stability for cases of

varying flow strengths and oscillatory time scales in section 6.4.

6.1 Simulation setup and details

6.1.1 Physical model system

The model system is shown in figure 6.1, and the capsule model was discussed in chapter 2.

An initially spherical elastic capsule of radius ro is subject to oscillatory planar extensional

flow, which has velocity field

u∞(x) = γ̇ sin(2πt/T ) [x x̂− y ŷ + 0 ẑ] (6.1)

where γ̇ is the shear rate and T is the period. Both the capsule interior and exterior fluids

have viscosity µ. The Skalak membrane dilatation and bending moduli are Ed = 10Es and

Eb = 5 × 10−3Esr
2
o, which are considered typical of capsules. Together these parameters

give a characteristic capsule relaxation time τ = µro/Es, Weissenberg number Wi = τ γ̇,

which serves as a measure of relative flow strength, and Deborah number De = τ/T , which

is a ratio of capsule to flow time scales.

6.1.2 Numerical flow solution

The numerical methods used to solve for the flow were described in chapter 3. As in chapter 5,

the free-space Green’s functions are used and all interactions are computed directly. The

spatial resolution of the capsule membrane is given by M = 6, and the capsule position is

updated with time step ∆t = 10−3T .

6.2 Base capsule motion

Capsules are initiated with their centroid at the stagnation point x = 0 and subject to (6.1),

as determined for varying Wi and De. We first simulate up to t = 10T , then select the

approximately periodic capsule motion once ‖~x[t]− ~x[t+ T̃ ]‖2 < 10−5 for some period T̃ .
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ŷ

x̂ x

y

Figure 6.1: Schematic of model LAOE flow system and velocity field.

We have |T̃ − T | < 10−5, which is expected in the viscous limit as the capsule interacts

instantaneously with the velocity field, so we simply quote T throughout.

t = 0, T t = T/4

t = T/2 t = 3T/4

Figure 6.2: Base-flow motion for the case Wi = 0.8 and De = 0.03.

A single period of the capsule motion for an example case is shown in figure 6.2. The

capsule at an integer multiple of T is spherical, then stretches in the ŷ-direction and

compresses in the x̂-direction. At the end of a half-period the capsule returns to a spherical

shape and begins to stretch in the x̂-direction and compress in the ŷ-direction. We construct

this periodic base-flow for a range of Wi and De, and analyze its stability through a stability

analysis as discussed in the next section.
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6.3 Stability analysis

The periodic flows identified in section 6.2 are analyzed with an extension of the Floquet

methods discussed in section 5.3 that includes non-modal and time-global effects. That is, In

general, C is real and non-normal (CTC 6= CCT), so it will not have a full set of orthogonal

eigenvectors. Though not diagonalizable, the eigenvalues of C, or Floquet multipliers, do

dictate the t→∞ behavior of small disturbances, so long as they do not trigger significant

nonlinear interactions before this behavior is realized [234]. We consider Floquet multipliers

for this reason, and next present a non-modal analysis for predicting the behavior of ‖~ε[t]‖
at shorter times.

The behavior of ~ε at any integer multiple (j) of the period is simply

~εj ≡ ~ε(jT ) = Cj~εo, (6.2)

and the maximum factor of growth Gj of ‖~ε‖ from period j to j + 1 is,

η2
j = max

~εo

‖~εj‖2
‖~εo‖2

= max
~εo

‖Cj~εo‖2
‖~εo‖2

= ‖Cj‖2, (6.3)

where ‖·‖ is the L2 norm as given by the maximum singular value. From (6.3) we see that

the eigenvalues of C only describe ‖~εj‖ for all j if C is normal. Thus, transient growth can

occur if ‖Cj‖ > 1 for any j, though this growth is bounded by max |ρi| for t → ∞. The

maximum growth after a single period is associated with the numerical abscissa [234], for

which we denote η1,i as the i-th largest singular value of C. When the subscript is omitted

it is assumed η ≡ η1,1; the associated singular vector ~vη is the disturbance that gives this

growth.

Further, we bound the growth of ‖~ε[t]‖ at any t, not just an integer multiple of the

period, through X[t]. The largest possible growth within the first period is,

∆ ≡ max
tj∈[0,T )

‖X[tj ]‖. (6.4)

This measure is particularly important if intra-period transient effects are sufficiently large

to trigger a nonlinear effects, which are discussed in section 6.4. We emphasize that ∆ will

not necessarily grow from period-to-period. The singular vector associated with ∆, ~v∆, gives

this growth.

6.4 Results

We consider cases with Wi ranging from 0.1 to 4, which corresponds to a ratio of the longest

and shortest capsule principal axes, as defined by the best-fit ellipsoid to the membrane

shape, between about 1.2 and 5. We vary De between 0.006 and 0.2. The stability of each

case is given by ρ, η, and ∆, as discussed in section 6.3.
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Figure 6.3: Floquet multipliers ρi, numerical abscissa η1,i, and maximum intra-period growth ∆ for
the case Wi = 0.8 and De = 0.03.

Results are shown for an example case in figure 6.3. We see our formulation can only

establish asymptotic neutral stability (|ρi| − 1 . 10−3). That is, C, and thus its eigenvalues,

are only accurate within the δ = 10−3 used to construct each A[t]. Of course smaller δ, even

more precisely determined base-flow cycles, and smaller time steps could determine these

values more accurately. However, this is challenging and likely unimportant as, were such

an instability to exist within this limit, it would require at least 2000 periods to amplify

by a factor of 10. Further, the three |ρi| ≈ 1 multipliers in this case are associated with

rigid-body-like rotations of the capsule, which this system is formally invariant to, and so

their approximately neutral stability is unsurprising. More evident is the ηi > 1 we see,

indicating transient instability. Here, 8 modes have ηi > 1, with the largest being η = 2.74,

and all of which being associated with membrane deformations. Lastly, the ∆ ≈ 2000 is

strikingly large, which we will show to be associated with a purely translational instability.
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Figure 6.4: Linear theory and DNS for ~vη and ~v∆ over one period for example cases as labeled.

We show a verification of our methods in figure 6.4, with the linear theory and associated

DNS closely matching for all cases and initial conditions. A relatively large intra-period

amplification ∆ is observed in each case, though this behavior is neutral from period-to-

period. Thus, it is only important if it triggers nonlinear growth, which would not be or

is sufficiently large to disrupt examination of the capsule for, for instance, experimental

purposes. An example of very large ∆ is shown in figure 6.4 (c), with ~v∆ amplifying about

5 orders of magnitude before ejecting the capsule from the computational domain (which

has size L). Also shown is the evolution of ~vη, which does have finite amplification after

one period, though this growth is transient in nature and must saturate at the rate given by

the largest Floquet multiplier. However, we have maxi |ρi| = 1 (within the accuracy of our

methods) for each case, and thus asymptotically neutral stability.
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Figure 6.5: (a) ~vη and (b) ~v∆ for the case Wi = 0.8 and De = 0.03, magnified for visualization as
~s[0] + 5~v.

Singular vectors ~vη and ~v∆ are shown for an example case in figure 6.2. Here, ~vη appears

as a shearing-like deformation in the x̂–ŷ plane and ~v∆ appears as a pure translation in the

x̂- or ŷ-direction. The appearance of the transiently amplifying disturbance ~vη as a shape

deformation of the membrane is consistent with previous studies of transiently unstable

capsule flows [137,158]. The translational character of ~v∆ can be anticipated as the capsule is

obviously unstable to such a disturbance in one of the coordinate flow directions at any time,

though the direction of this instability switches at every integer multiple of the half-period,

resulting in the neutral stability observed in figure 6.4.

Example ∆ for several cases are shown in figure 6.6. We see ∆ increases with Wi and

1/De, which is expected as the strength and duration of the intra-period instability increases,

respectively. The increase of ∆ with 1/De is clearly exponential for constant Wi , which we

describe with rate α. Further, α increases linearly with Wi (with slope 1/π), as shown in

figure 6.6 (b). Together, this gives,

∆(Wi ,De) = exp

(
Wi

πDe

)
. (6.5)

Interestingly, this result is consistent with the displacement of a rigid, infinitesimal,

particle perturbed in an analogous one-dimensional oscillatory extensional flow. This can be

deduced from the governing equation of such a particle,

dx

dt
= γ̇x sin

(
2πt

T

)
, (6.6)

where x is the particle position. This has solution

x(t) = δ exp

(
γ̇ T

2π

[
1− cos

(
2πt

T

)])
, (6.7)

where δ sets the initial size of a translational disturbance to the particle. It is evident that

the largest disturbance occurs when t = T/2 or 3T/2, giving ∆ = exp(γ̇T/π), consistent

with (6.5). Thus, we deduce that the a spherical capsule behaves very nearly as a rigid,

infinitesimal, particle when subject to a translational perturbation in LAOE flow.
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Figure 6.7: Pipkin space showing isocontours of ∆ and η100 as labeled.
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We use (6.5) to cast isocontours of ∆ onto a Pipkin space (Wi versus De), as shown in

figure 6.7. We also show the locus of cases with η100 = 10; that is, cases that could amplify a

disturbance by a factor of ten over 100 periods through a transient mechanism. Its apparent

that η100 & 10 for only large Wi and small De, especially when compared to isocontours of

∆, which are very large for the same cases. Thus, we conclude that the transient instability

we identify is subservient to the translational intra-period instability.

6.5 Discussion and conclusions

We formulated a non-modal Floquet stability analysis for fully-coupled capsule-viscous-flow

systems, extending previous studies of time-stationary capsule flows. This analysis was

applied to the motion of spherical capsules subject to LAOE flow of varying flow strength

and time scales. All flow descriptions were found to be asymptotically stable, a result shared

with the time-stationary version of the same system [333]. A set of transiently unstable

disturbances, however, were identified for each each case. These disturbances took the form

of a shape distortion of the capsule membrane, consistent with other transient stability

analyses of capsule flows [137,158]. Here, transient disturbances amplified slowly over many

periods, as demonstrated by the only small fraction of cases that satisfied η100 > 10. Further,

their growth necessarily saturates at long times as a result of their asymptotic stability.

Thus, this instability is unlikely to be important in most applications. Also identified in

each case was an intra-period instability, associated with a translation of the capsule. This

disturbance was able to amplify many orders of magnitude in certain cases, depending on the

flow strength and period, and matched the behavior of a rigid infinitesimal particle in the

same flow. However, the intra-period instability was neutrally stable from period-to-period,

again precluded by the asymptotic stability of each case. As such, it is only expected to be

important if it is not controlled for, as has been done previously for DNA [225,226], and De

is sufficiently small and Wi sufficiently large for the application of interest.
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7 Concluding remarks

7.1 Research summary

7.1.1 Model systems and solution method

We investigated the mechanical stability of three capsule-viscous-flow systems, including

red-blood-cell-trains flowing in a model microvessel and capsules in homogeneous shear flow

and planar large-amplitude oscillatory extensional flow. In each case the capsules were

modeled as thin-shell elastic membranes encasing and surrounded by incompressible and

Newtonian fluids. Capsules were represented with spherical harmonics, which provided a

highly accurate description of their membrane geometry, and the flow was discretized using

boundary integral methods generalized for Stokes flow. This scheme was used to construct

base flows for each flow system, which were then analyzed with respect to their stability.

7.1.2 Stability analysis

The main contribution of this dissertation was the establishment of a new approach to the

linear stability analysis of coupled capsule-fluid flow systems, such as those of cellular blood

flow or flowing capsule suspensions. A nonmodal time-stationary stability analysis was

developed for studying red blood cells flowing in a microvessel, as the base flow advected at

uniform velocity. This was extended with Floquet methods to formulate a stability analysis

for time-periodic base flows; specifically, the rolling or tumbling motions of capsules in

homogeneous shear flow. Finally, this Floquet formulation was extended to include nonmodal

effects. This analysis was applied to spherical capsules in LAOE flow, as transient instabilities

were anticipated important due to the large capsule deformation exhibited within one period

of its motion.

In each case, the linearization was constructed via a full-rank orthogonal set of small

disturbances to the capsule shapes, as constructed by the set of spherical harmonic modes

that described them, and computed directly for the full nonlinear equations. This resulted

in a linear system that described the first-order coupling of the base state to the set of

disturbances, which was analyzed through eigenvalue and singular value analyses to determine

its asymptotic and transient behavior, respectively.

The spectral description of capsule membranes employed here was able resolve capsule

shapes with relatively few modes, preventing the linear system that arises from the stability

analysis from becoming large. This was particularly important for our Floquet analysis

formulation, which required a large discrete set of realizations of the time-stationary analysis

about the flow period in order to construct the linear system. A less accurate membrane
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description, such as those utilizing finite-element methods [7,67], would require a finer surface

discretization to obtain the same accuracy, and thus lead to larger linear systems. Further, the

boundary integral methods used here were advantageous as the flow solution was described

entirely by the position of the surfaces, so there was no need to evaluate the velocity of the

fluid itself. Methods that requiring evaluation of the velocity of the surrounding fluid, such

as those utilizing immersed boundary [334–336], homogeneous continuum models [337, 338],

or lattice–Boltzmann techniques [339, 340], can thus be expected to generate large linear

stability systems.

While our stability formulation was perturbation-based and included coupling between a

full-rank set of disturbances and the base flow, its construction can be expensive. Data-driven

methods, such as the dynamic mode decomposition (DMD) [266–269], or Koopman operator

techniques [269, 270], have proved useful if a highly accurate base flow is unavailable or

full construction of the linear stability analysis is prohibitively expensive. These methods

determine the most unstable growth rate through a series of temporal realizations of the

evolution to disordered flow. Often only a relatively small number of such realizations are

required, making such analysis computationally efficient. Further, direct computation of

disturbances to the flow, or construction of an accurate base flow, are not required. However,

such analyses cannot quantify the rate at which a full-rank set of disturbances to the system

decay, as the dynamics are dominated by the most unstable flow behavior, nor do they

anticipate transient instabilities. We anticipate such methods can be applied to capsule flow

systems such as the ones considered here, and would be particularly useful for vary large

systems, such as those derived from lower accuracy numerical methods or many-capsule flows.

Of course advancement in computational capabilities will also facilitate these large-scale

analyses.

7.1.3 Flow instabilities

While the flows considered were relatively diverse, including both confined and unconfined

flow, and pure shear and extensional flow, they do share stability properties.

The character of the matrices deduced from our linear stability analyses was important

for the type of instabilities that could be expected. For all flows this matrix was non-normal;

that is, they were real and non-symmetric, a property which can anticipated from the flow

equations (see chapter 4). As a result, the associated set of eigenvectors are not necessarily

orthogonal, and transient instabilities were anticipated.

Transiently unstable disturbances were identified for all flows. In each case, the most

transiently amplifying disturbance appeared as a shape deformation of the capsule mem-

brane(s). For the cell trains of chapter 4, these disturbances even appeared kinky in character

(though, as discussed in section 4.3.2, this was in part due to magnification of an otherwise

small disturbance). Indeed all transiently unstable disturbances for all flows we considered

shared this property, and we expect the non-normality of the stability analysis as computed

from the governing flow equations of similar capsule systems to result in similar transient

instabilities.

The shape distortion of the capsules membranes were quantified by the finite strain
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energy associated with the disturbance. However, no asymptotically unstable disturbances

carried finite strain energy, as they appeared as rigid-body-rotations and translations of the

capsules. This has consequence: disturbances that carry large strain energy, such as the

transiently unstable ones identified here, are unlikely to occur spontaneously due to thermal

fluctuations. In section 4.3.6 we saw that transiently unstable disturbances to red blood cell

trains were only able to form with magnitude less than one part in 1000 of the nominal cell

radius due to such thermal effects, a size too small to result in asymptotic growth through a

nonlinear mechanism, as shown in section 4.3.2.

We emphasize that the transient growth in each case saturated after a relatively short

time, amplifying at most a factor of ten before decaying. As such, the transient mechanism

was subservient to the asymptotic instabilities identified through eigenvalue analysis. This

behavior can then be expected for other capsule flows, and transient growth analysis might

not be necessary for cases where only small disturbances of the actual system are expected.

7.2 Reduced-order flow descriptions

One of the goals of the presented stability analyses was to identify the nominal stability

behavior of the complex capsule flows. We expect this behavior to be important for the design

of reduced-order flow systems, for which we consider two approaches here. Further, accurate

computation of many-capsule flows, such as that required to determine the capsule-train

base-states described in chapter 4 and appendix C, can be relatively expensive and relies

upon a full description of the capsule membranes and viscous-flow system. We anticipate

that a reduced description of this complex flows can expedite the analysis and lead to a direct

understanding of the physical mechanism that amplifies the identified unstable disturbances.

In this vein, we introduce two possible paths for developing such models; the first focuses on

a continuum model, appropriate for the highly-packed red blood cell trains, and the other a

discrete sphere system, focused on the motion of individual cells.

Core fluid

Annular fluid

U

Figure 7.1: Schematic of a proposed core-annular rheological flow. U is the fluid velocity profile,
the dotted curve is an example of a perturbation to the fluid–fluid interface, and the hashed lines
indicate the no-slip wall boundary.

The continuous rheological flow is shown in figure 7.1. It is a core-annular flow of

incompressible and immiscible fluids within a rigid tube. We anticipate this flow to be

an appropriate model of capsule trains with relatively small capsule–capsule spacing (or
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relatively large φ, in the notation of chapter 4). The core fluid should be capable of displaying

the rheological properties of whole blood [341, 342]; examples of which are the Casson or

Carreau–Yasuda models, both often used to model whole blood flow generally [343–345].

The annular fluid should model the behavior of blood plasma, and so a Newtonian fluid

model is likely to be appropriate.

The continuous fluid–fluid interface interface can then be studied with regard to its

stability. Assuming Stokes flow, the governing equations should be linearized about the base-

flow shown in figure 7.1, then analyzed using the eigenvalue and singular value methods of

section 4.2. Preliminary analysis of a further simplified system; that is, a jet of incompressible

Newtonian fluid, is presented in appendix D and serves as a formulation and verification of

the methods required to solve the more complex problem shown schematically in figure 7.1.

Also included are further extensions of the proposed model flows and expected difficulties.

U

Figure 7.2: Schematic of a model rigid-sphere flow system.

When the train capsule–capsule spacing is relatively large, the continuum-based approach

discussed above is surely not a good approximation of the actual flow behavior. For this

flow configuration, we anticipate that a rigid-sphere flow system can model the the stability

behavior of the capsule train. Indeed complex particulate flows have been modeled as

rigid-sphere systems for a long time. A candidate model flow is shown in figure 7.2. It is

a train of spheres flowing in a Newtonian fluid with constant velocity U . Each successive

pair of spheres are connected with purely viscous and elastic elements, which are proposed

as models for the viscous and elastic behaviors of actual capsules. The hydrodynamic

interactions between the spheres, and thus their velocity, can be readily computed using

Faxen’s law and the method of reflections [346]. This leads to a set of governing differential

equations that can be studied with a normal mode stability analysis. In appendix E, an

even simpler model sphere flow system, that is, one where all spheres are uniformly spaced

with no elastic or viscous connections, is presented and analyzed. While this system is again

simpler, it contains the core methods required to analyze more complex flows, such as that

of figure 7.2. The challenges of analyzing these more complex systems are also discussed.

7.3 Future work

7.3.1 Extensions of our methods

While only capsule flows were considered here, the presented analysis provides a route to

understanding soft particle motion and stability generally. Indeed this formulation would

be applicable to the flow of droplets, colloids, vesicles, or other fluid–structure interaction

problems whose velocity can be computed directly and accurately with numerical methods.

Spectral boundary integral methods are particularly attractive in this respect, since they

only rely upon an accurate representation of the particle surface, as discussed above.
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The presented analyses proved particularly useful when the base flow is known or can be

readily computed, but its stability is unknown. That is, for the capsule-trains of chapter 4

and the capsule in LAOE flow of chapter 6, the base flow could be anticipated based on

flow symmetry or stagnation points, and for the oblate capsules in homogeneous shear of

chapter 5 the base flow was computed directly. Indeed other rheometric flows share this

property. For example, Stokes traps designed for multiplexed particle manipulation attempt

to control the flow and stability of several flow stagnation points [347]. In this case, particles,

such as polymers, are placed at the stagnation points and oscillated with respect to each

other, resulting in an approximately periodic base flow. Such hydrodynamic flow traps are

often used for determining the material properties and kinematic behavior of soft particles,

motivating an understanding of their stability.

While the formulations presented here were limited to time-periodic base flows, methods

for relaxing this restriction exist. Known as generalized Floquet methods, these techniques

predict the stability of any time-dependent flow. Such analysis is expected to be more

expensive that an analogous time-stationary or time-periodic flow, though is potentially

tractable with the highly accurate methods presented here. Extending our formulation in

this respect would then be appropriate for any non-time-periodic capsule flow, such as that

of biconcave capsules in sufficiently strong steady [348] or oscillatory shear-flow [231], or

single-vesicle dynamics in narrow confines [349].

Our stability formulation was strictly limited to linear terms in the disturbance of the

base flow. This was not prohibitive for our analysis, as our methods were sufficiently

accurate that very small perturbations (one part in 1000 of the nominal capsule radius, or

smaller) could be analyzed, making the linearization a good approximation of the actual

flow. However, disturbances in actual physical systems are not always this small. In

such cases, nonlinear contributions of the disturbance to the base flow could be important.

Fortunately, our formulation can be extended to consider weak nonlinearities with traditional

methods [350–352]. This requires higher-order tensors for describing the higher-order

couplings between the disturbances and base flow, which could be computed directly for

sufficiently small disturbances with our highly accurate methods. However, this entails

additional computational complexity as the tensors become much larger, and as such, only

single- or few-capsule systems would likely be computationally tractable with our current

methods.

7.3.2 Discriminating chaotic from stochastic behavior in blood

flow

In section 4.3.2, we observed the breakup of uniform red blood cell trains into a disordered

flow. Similar disordered flow has also been observed in microcirculation (see section 1.2.1),

and previous efforts have reproduced details of the cell-scale kinematic behavior with the

same numerical flow solver [144].

While this disordered flow is familiar, a predictive model of the cellular motion has

yet to be found. Underpinning such a prediction is the origin of the dynamics themselves.

The behavior of such dynamical system can be classified as stochastic or fractal noise, or
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Figure 7.3: Evolution (and magnification) of the radial cell position of the flow above, as quantified
by the cell centroid distance from the vessel centerline for an example cell. The entire time series
entails 3000 vessel diameters of streamwise cell travel. A visualization of the disordered flow is also
shown, the mean velocity is from left to right.

belonging to a chaotic attractor, often of much lower dimension than the full system. This

has consequence: if the kinematics are chaotic, we can construct a low-dimension dynamical

system that reproduces the flow behavior. However, if the disordered flow appears stochastic

in nature; that is, appearing to derive from a random or nondeterministic process, such as

that of turbulence [353, 354], then such a system cannot be found. We present a preliminary

analysis based upon well-known tools for discriminating between these behaviors.

Figure 7.3 shows time series data for the cell kinematics of an example flow, which was

solved using the methods of section 3. The radial location of a cell within the vessel is known

to be an important quantity when analyzing cellular blood flow, as it is useful for quantifying

margination (see section 1.2.1), and is expected to be important in microfluidic devices used

to operate on cells individually. This time series then serves as example data for subsequent

analysis.

Discriminating between chaotic and stochastic behavior is not trivial, and misuse of any

specific metric used to quantify the difference can lead to erroneous conclusions [355,356].

To this end, a combination of common measures are typically used to ensure the validity of

the conclusions. The time series of figure 7.3 serves as an example data set that we analyze

it with these measures; however, we confirm that the reported preliminary results hold for

other measures describing the same flow, including the Euclidean distance between any two

capsule centroids, and the magnitude of the velocity of any capsule centroid.
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Fourier

spectrum

[357–359]

Utility: Identifying dominant frequencies. Chaotic systems often
have a repeated structure in phase space, leading to “spikes” in
the Fourier spectrum.
Result: The spectrum has no dominant frequency. For small
wavenumbers, the spectrum is flat. A power-law decay in the
spectrum is observed for high wavenumbers, similar to that of
turbulence.
Conclusion: Stochastic behavior

Correlation

dimension

[360–362]

Utility: Given by the mean probability that states at two different
times are within a threshold distance. Serves as a measure of spatial
correlation of any pair of nearby points.
Result: Correlation dimension is the same as the embedding
dimension of the data for dimensions up to 100.
Conclusion: Stochastic behavior

Structure

function

[363,364]

Utility: Gives the stationary space-time correlations of the local
cell position. Chaotic systems have the same structure function
behavior as a function of space under time-differentiation, while
stochastic noise does not.
Result: Taking time derivatives of the data result in a flattening
of the structure function.
Conclusion: Stochastic behavior

Lyapunov

exponent

[365–367]

Utility: Gives the rate of divergence of nearby spatial trajectories.
Result: The maximum exponent is extremely large, > 5 for all
time series. This is much larger than is considered normal for
chaotic systems.
Conclusion: Stochastic behavior

Table 7.1: Tools for discriminating between chaotic and stochastic behavior and their results.
Visualization of these metrics are not shown for brevity.

Table 7.1 shows a set of methods used to examine the behavior of the time series shown

in figure 7.3. All methods point to the same conclusion: the data appear stochastic in nature

and do not come from an underlying low-dimensional dynamics. Of course further analysis

of these data is required to fully substantiate this claim, though this the subject of future

work. Details of our simulations, data, and analyses around found in appendix F.
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A Particle-mesh Ewald method

The periodic boundary conditions of chapter 4 require suited Green’s functions. Following a

common practice, these are computed using an Ewald summation [313, 368] This is done by

decomposing G and T into short-range (sr) and long-range (lr) components,

Gij = Gsr
ij +Glr

ij and Tijk = −8π

V
xjδik + T sr

ijk + T lr
ijk, (A.1)

where V = L1L2L3 is the volume of the computational domain. These have been previously

calculated [290]. The short-range parts are

Gsr
ij =

∑

s

erfc(r̂)

(
δij
r

+
rirj
r3

)
+

2√
α

∑

s

exp(−r̂2)
(rirj
r2
− δij

)
, (A.2)

and

T sr
lmn = −8

√
π

α

∑

s

Φ3/2(r̂2)r̂lr̂mr̂n, (A.3)

where s = (n1L1, n2L2, n3L3) is the periodic shift, r = x−xo+s is the displacement vector,

r̂ =
√
π/αr is its dimensionless form, α is the Ewald splitting parameter and gives the

length scale of the decomposition, and Φβ is an incomplete γ-function for order β. We

compute (A.2) and (A.3) directly using a sufficient number of close interactions within the

neighborhood of xo. This calculation converges quickly for expansion of the number of

included neighbor points, as the short-range Green’s functions decay exponentially with

r̂ [369]. Thus, a near-neighbor list is used to efficiently track these interactions, giving a

computational complexity of O(NM) [4, 290].

The long-range (or smooth) parts are

Glr
ij =

2α

V

∑

k 6=0

Φ1(k̂2)(k̂2δij − k̂ik̂j) exp[i2πk · (x− xo)], (A.4)

and,

T lr
lmn =

2α

V

∑

k 6=0

(i2π)(klδmn + kjδln + knδlm)Φ0(k̂2) exp[i2πk · (x− xo)] (A.5)

+
α2

πV

∑

k 6=0

(i2π)3klkmknΦ1(k̂2) exp[i2πk · (x− xo)]. (A.6)

where k = (n1/L1, n2/L2, n3/L3) is the local wavenumber and k̂ =
√
παk. The smooth part
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is computed through usual smooth PME methods [313,370,371]. That is, the Ewald sum

of (A.4) and (A.6) are calculated on a uniform mesh spanning the computational domain,

for which each surface singularity is distributed to through B-splines, using fast Fourier

transforms. The computed velocities are then interpolated back to the surfaces. This gives a

total arithmetic operation scaling of O(NM logNM) for the long-range component of the

Green’s functions, and thus of the overall PME method.
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B Buckling and its effect on the
confined flow of a model capsule
suspension

B.1 Introduction

Rheology of suspensions depends upon the mechanics of the suspended elements, which

can be particular complex for elastic capsules, especially when flowing in narrow confines.

In such cases, the membrane deformations can be strongly coupled with the overall flow

dynamics [67,70,372], making it difficult to analyze. We consider a simple model suspensions

of such capsules, each an incompressible liquid filled elastic membrane. These can be

considered models of natural capsules, such as vesicles, biological cells, or viruses, or

artificial capsules such as those used for targeted drug delivery or time releasing aromas or

flavors [49,50,53,54]. Natural capsules typically are formed by a lipid bi-layer membrane,

which is buttressed in many cases with additional molecular components such as proteins.

Common artificial membrane are manufactured using polymers such as alginate, poly-L-

lysine, or polyacrylates [33]. While these molecular details are important for the dynamics

of any particular capsule system, we focus our study specifically on the finite-deformation

dynamics of highly deformable membranes, and do not further consider their molecular

make-up.

Blood is a particularly important suspension of this type, and though we only consider a

two-dimensional model configuration, it does reproduce important phenomenology, quantita-

tively in cases, and potential implications for the flow of blood cells in tight confines are

discussed throughout. The baseline configuration we considered displays a biconcave shape

equilibrium similar to red blood cells [373–376]. We also consider capsules with increased

and decreased relative surface area, which correspond to certain pathological conditions in

blood. Both surface area and volume are approximately constant for healthy red blood cells,

but some disease conditions cause relative volume to disproportionately increase forming

spherocytes [327,377,378], or decrease forming sickle-shaped cells [326]. Similarly, shape and

mechanical properties are potentially important design parameters for artificial capsules to

be suspended in blood or used otherwise [379–382], and the development of artificial blood

remains a long-term goal [60]. In our model, we consider a range of equilibrium shapes,

loosely based upon these observed and potential variations, which lead to phenomenological

changes in the capsule dynamics and thus the confined-suspension rheology.

The rheological behavior of such a suspension flowing in a narrow channel is most

obviously manifested in its effective viscosity, as would be deduced based on pressure drop

were it a homogeneous Newtonian fluid. For blood, complex scale-dependent behavior of

effective viscosity has been observed for a long time [89,90], the root mechanism of which

seems to be the formation of a cell-free layer at adjacent walls. Their formation decreases
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flow resistance and is thought to be an important factor in microcirculatory dynamics [5].

The thickness of this cell-free layer has been shown to decrease with increasing hematocrit,

increase with increasing flow rate, and decrease with increasing cell stiffness [94–98]. We

show a fundamental change in this layer for increasing membrane surface area: the overall

viscous resistance increases abruptly with a concomitant disappearance of any significant

cell-free layer. The implications of this potentially extend beyond the overall rheology since

the properties of red blood cells are also known to mediate the margination process of

leukocytes and platelets [101–105], which are important for inflammation and thrombosis.

Our goal is to quantify the effective viscosity, as it depends upon the membrane surface

area, and understand how this rheological behavior relates to the dynamics of the suspended

elastic capsules. In particular, we investigate changes that occur as capsule equilibrium

shapes are varied from relatively circular to highly elongated, and how the microstructural

dynamics of these capsules manifest in the macroscopic suspension dynamics. This is done

with a detailed, though two-dimensional, flow configuration, which serves as model for

blood and its flow, either in the microcirculation or in a microfluidic device. While this

two-dimensional model will not necessarily be quantitatively precise for blood, or indeed

any genuinely three-dimensional suspension, such a model has been used extensively to

study capsule dynamics in homogeneous shear [67], and to reproduce key phenomena of the

microcirculation [165,383]. Its advantage is that it facilitates simulation of many cases and

more extensive averaging to collect important flow statistics, which is helpful for discovering

and mapping out flow mechanisms and regimes.

The specific flow configuration studied is introduced in section B.2, and the spectral

boundary integral method used to solve the fully-coupled fluid-structure capsule dynamics

is outlined in section B.3. The results are discussed in section B.4, which includes the

rheological changes in the suspension effective viscosity and the microstructural changes

in the suspended capsules. This section also includes auxiliary simulations to quantify a

capsule buckling behavior that is linked to the overall suspension dynamics and is reflected

in a rapid increase in the role of capsule rotation in the overall dynamics, as quantified by a

multipole expansion analysis. Section B.5 summarizes the principal conclusions and provides

some additional discussion regarding their implications.

B.2 Physical model system

We consider a streamwise periodic channel as a model for fully developed flow in a long

section of a microvessel or microfluidic device as shown in figure B.1. The mean flow velocity

is U , the channel width is W , its periodic length is L, and in it are N suspended capsules,

each of area A = πr2
o. For all quantitative results, L = 40ro, which is sufficiently large

that the reported results are insensitive to it. This was confirmed by doubling L and N for

selected cases and confirming that effective viscosity statistics were unchanged. Channel

widths vary from W = 14ro to 40ro. The area-fraction of the channel occupied by the
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capsules, a nominal hematocrit were this blood, is

Hc =
Nπr2

o

WL
, (B.1)

which is varied Hc = 0.01 to 0.4, covering a wide range from dilute to approximately that of

whole blood.

L

W

lo = 2πξoro

A = πr2o

Figure B.1: Schematic of the two-dimensional streamwise-periodic model channel with capsules of
area A and perimeter lo.

The capsules are encased by elastic membranes with linear finite-deformation tension and

bending moduli, T and M respectively. This linearization is derived from the full nonlinear

Helfrich energy [384] and has been employed previously for thin elastic membranes [165,385].

We also verify that key reported observables changed by at most 4% upon using the full

nonlinear Helfrich energy. In terms of an arc length coordinate s(so) and reference arc length

so, the membrane tension τ and bending moment b are,

τ = T
(
ds

dso
− 1

)
and b =M(κ− κo), (B.2)

where C is the curvature with reference curvature Co = 0. With these, the net traction

exerted by the cells on the fluid is

∆σ =
∂tτ

∂s
+

∂

∂s

(
∂b

∂s
n

)
, (B.3)

where t is the membrane unit tangent and n is its outward unit normal. Of particular

interest is the membrane reference length lo relative to its minimum (that of a circle), which

is parameterized by ξo: lo = 2πξoro. As such, ξo is the squared inverse of what might be

considered a reduced area,

Ar =
4π [area]

[perimeter]
2 =

1

ξ2
o

, (B.4)

though we will generally quote ξo because of its clear connection with the capsule reference

perimeter and therefore buckling criteria (see section 4.6).

The fluid both inside and outside the capsules is Newtonian with viscosity µ. Actual
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red blood cells are thought to have an elevated interior viscosity [12, 386], by about a factor

of 5 [14], though matched viscosity has been shown to provide qualitatively realistic blood

flow phenomena in two dimensions [165] and quantitative accuracy for many quantities in

three dimensions [144]. Taking values appropriate for blood under physiological conditions,

the Reynolds number based upon the mean flow U . 1 mm/s, mass density ρ = 103 kg/m3,

µ ≈ 3 · 10−3 Pa·s, and W = 30µm is Re ≈ 0.01, which supports neglect of inertia in

the governing equations. We assume that any corresponding manufactured capsules or

microfluidic devices operate under similarly low-Reynolds-number conditions. For convenience

we form the parameters into a capillary number

Ca ≡ µU

T , (B.5)

which we vary from Ca = 0.2 to 1 and can be interpreted as a ratio of a relaxation time to

an advection time. Similarly, we define a relative stiffness parameter,

r2
0T
M = 50, (B.6)

which we hold fixed at this relatively large value as a model for the near incompressibility of

typical capsule membranes.

B.3 Numerical methods

The discretization is based upon a boundary integral representation for the velocity ui in

terms of the surface tractions from (B.3) [159,311]:

ui(x) = Ui(x) +
1

4πµ

∫

Ω

Sij(y − x)∆σj(y)ds(y), (B.7)

where U(x) = (U, 0, 0) is the mean velocity and Ω represent all the membranes and the

vessel walls with outward unit normal n. The kernel Sij in (B.7) is the Green’s function of

the Stokes equation (the so-named Stokeslet),

Sij(x) =
x̂ix̂j
r2
− δij ln r, (B.8)

evaluated at x for a singular unit-strength Stokeslet force at x′, with x̂ ≡ x−x′ and r ≡ |x̂|.
Each membrane is discretized by Np points distributed uniformly over its (periodic)

reference arc length, parameterized by so. Derivatives and integrals on the membranes are

computed via an interpolating Fourier series [4, 310]. Though the Stokes flow (B.7) and the

constitutive model (B.2) are linear, the geometric factors (normals, tangents, and curvatures)

introduce nonlinearity, which can lead to numerical instability via aliasing [4, 70]. This is

suppressed, without compromising the fidelity of the solution supported by the Nyquist limit

of the Np collocation points, by evaluating ∆σ(so) on Na > Np points and Fourier filtering

to Np points after nonlinear operations. In all simulations Na = 4Np. We confirm that

reported results are insensitive to the selected resolution Np.
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To avoid both the complexity of a series Green’s function to represent the walls [387,388]

and the solution of a single-layer formulation, we enforce the no slip condition via a penalty

method in which the wall is constructed from elements that are permitted to displace a small

amount. Each of the 750 independent ∆sw-wide elements of each wall is anchored to its

reference location xw by a Hookean spring, so its imposed traction is

∆σw = −Sw(x− xw). (B.9)

The spring constant Sw = 1.7T /r2
o can be relatively large without restricting the stability

limit of the time integrator as set by the capsule membrane dynamics.

Consistent with the neglect of inertia in the flow equations the capsule membranes and

vessel walls are assumed to be massless, so given the velocity u(x) from (B.7), the membrane

position is governed simply by

dx

dt
= u(x), (B.10)

which is applied to each collocation point of the discrete representation. This system

(B.10) is integrated in time using a second-order Runge–Kutta scheme with a time step of

∆t = 0.01µro/T .

It is well-understood that the lubrication layers that form upon close approach between

such capsules would mathematically prohibit contact in finite time for finite forces. However,

even in our idealized physical model, numerical errors can lead to overlap between the

capsules, which we avoid with a short-range repulsion between nearby capsules. Though

this can be a considered as a model for repulsive lubrication forces, physiologic capsules are

expected to have more complex interactions, so it is unclear that even a precise lubrication

formulation would be appropriate. Steric and electrostatic repulsion are thought to mediate

contact between red blood cells at very small length scales [389]. For realistic simulation of

blood cells in three dimensions, boundary integral have been used to simulate lubrication

down to the scale of proteins [144], but further resolution is unlikely to provide a more

realistic physical description because it would not represent in detail the actual contact

and near-contact interactions. In our formulation, the repulsion force at a point x on a

membrane due to another x′ is

f(x) =




Sf

eδ−r−1
eδ−1

x−x′
r for r ≤ δ

0 otherwise
, (B.11)

where r = |x−x′|, δ = 0.2ro, and Sf = 2.5T . The derivative of f with respect to s is added

to the traction (B.3) in the integrand of (B.7). Similarly, the area of the capsules is only

enforced by the fidelity of the numerical schemes. Although this is very accurate because it

is a low-order moment of the capsule shape and thus well resolved, still a weak variational

correction is applied to preserve constant area indefinitely as has been used previously [165].

Our implementation has been extensively verified against analytical results for Poiseuille

flow in a wavy-walled channel [383], and more recently for the drag on an infinite periodic

lattice of circles in cross-flow [368]. In this latter case, results are within 1% error for 50
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collocation points and 0.4% error for 100 collocation points per circle. We also confirmed that

the effective viscosity we report changed by less that 1% upon changing the wall strength

from Sw = 1.7T /r2
o to 3.4T /r2

o, repulsion from Sf = 2.5T to 5T , and both doubling and

halving the repulsion length scale δ.

B.4 Results

B.4.1 Equilibrium shapes

We start by visualizing the equilibrium shapes for different ξo in figure B.2, which display

expected variations [373,390, 391]. Taking ξo = 1.0 yields a circle, which is only ever slightly

distorted by flow for our conditions, and small increases in ξo lead to a mildly prolate convex

geometry. Increasing prolate shapes for larger ξo transition to a biconcave configuration near

ξo ≈ 1.4, nominally matching a healthy red blood cell for ξo ≈ 1.6. Increasing ξo further

leads to additional inflection points for ξo & 2.1 and produces dog-bone-like shapes with

increasingly high aspect ratios. Note that the repulsion force f between sufficiently close

collocation points, according to (B.11), prevents the membrane from self-intersecting for

large ξo, as it would otherwise.

ξo Shape Visualization

1.0 Circle

1.3 Prolate

1.4 Prolate-biconcave transition

1.6 Biconcave

1.8 Biconcave

2.1 Biconcave-dog-bone transition

2.4 Small aspect-ratio dog-bone

3.0 Large aspect-ratio dog-bone

Figure B.2: Example equilibrium shapes for different ξo.
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While ξo ≈ 1.6 corresponds most closely to a healthy red blood cells, the near-circular

capsule geometry (ξo ≈ 1) is characteristic of spherocytes, the defining symptom of sphereo-

cytosis, a hereditary disorder that mutates the genes encoding red cell membrane proteins,

causing a loss of membrane [374,392]. Additionally, many artificial capsules are manufactured

to have a similar spherical shape [53, 379–381,393]. With increasing ξo, the capsules become

elliptical and prolate. These geometries are found in elliptocytes, which is similarly found in

those diagnosed with elliptocytosis, caused by similar mutations as spherocytosis, but arise

via a lateral interactions of the cytoskeleton [374,392]. For larger ξo & 2.0, corresponding

configurations for red blood cells have been observed in severe cases of anemia and sickle

cell anemia [394,395]. Manufactured capsules of this geometry have also been proposed for a

variety of applications, such as coatings, aerosols, and drug delivery [396,397] with different

conformations. The behavior of these different capsules in flow is considered next.

B.4.2 Flow visualizations

Figure B.3 shows flowing capsules for different ξo at the largest and smallest capillary

numbers. In the ξo = 1.0 nearly circular limit (figure B.3 (a) and (b)), capsules are only

slightly deformed from circular shapes, though more so for the faster flow and nearer to

the vessel walls where the shear is larger. The asymmetry of near-wall capsules is thought

to facilitate their migration towards the center of a channel [144, 398]. For the ξo = 1.7

cases, with biconcave equilibrium shapes, capsules in figure B.3 (c) and (d) do not show

any significant shape distortion for the range of capillary numbers simulated. In the large

ξo = 3.0 cases (figure B.3 (e) and (f)), some capsules fold (as visualized specifically in figure

B.4), which seems to disrupt their otherwise relatively ordered flow. This will be analyzed

subsequently as a buckling mechanism, and the increased resistance this causes will be

quantified as an effective viscosity. It can also be seen that the obvious cell-free layer in the

smaller ξo cases seems to disappear in this largest ξo = 3.0 cases; this too is quantified in

subsequent sections.
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Slow Ca = 0.2 Fast Ca = 1.0

ξ o
=

1.
0

(a) (b)

ξ o
=

1.
7

(c) (d)

ξ o
=

3.
0

(e) (f)

Figure B.3: Flow visualizations for Hc = 0.25, W = 14ro, cases are Ca = 0.2 and Ca = 1.0 and
ξo = 1.0, 1.7 and 3.0 as labeled. For these visualizations L = 30ro.
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0.07

(a) ξo = 1.6

0.06

(b) ξo = 1.8

0.04
0.14

(c) ξo = 2.0

0.03

0.53

0.12

(d) ξo = 2.2

0.10

0.68

0.02

(e) ξo = 2.4

Figure B.4: Visualizations showing the onset of apparent buckling behavior for Hc = 0.25, W = 14ro
Ca = 1.0 for ξo as labeled. The numbers indicate the buckling metric defined in section B.4.6.

B.4.3 Macroscopic resistance: Effective viscosity

The behavior of the capsules in flow for different ξo significantly alters the effective viscosity

of the suspension,

µeff

µ
= − W 2

12µU

〈
dp

dx

〉
. (B.12)

Reported values for µeff are time averages, starting after an apparently statistically stationary

flow condition has been reached as quantified in figure B.5. After an obvious transient,

averaging is initiated once the instantaneous µeff varies by less than two percent. This

condition is used for all cases reported.

0 4,000 8,000 12,000

2

2.5

3

< 2%

t T/µro

µ
e
ff
/µ

Figure B.5: Instantaneous µeff from (B.12) for Hc = 0.25,W = 20ro and ξo = 2.4. The nominally
transient period is shaded, after which effective viscosity deviates by < 2%.
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0 0.1 0.2 0.3 0.4

1.00

1.20

1.40

1.60

W/ro

Pries et al. (1992)

Current study

Hc

µ
e
ff
/µ

W/ro
40
34
28
22

(a) µeff versus Hc for various W/ro

25 30 35 40

1.13

1.18

1.23

1.28
Hc = 0.20

Pries et al. (1992)

Current study

W/ro

µ
e
ff
/µ

(b) µeff versus W/ro for Hc = 0.20

Figure B.6: Effective viscosity µeff from (B.12): (a) as a function of hematocrit for fixed channel
width and (b) as a function of W for Hc = 0.20. Note that the dashed lines represent empirical fits
of experimental data from [5].
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We first consider ξo = 1.6, which would best correspond to healthy red blood cells,

and vary Hc and W , as in previous rheological studies of blood [76,90]. In figure B.6 (a),

effective viscosity is found to increase nonlinearly with Hc, in qualitative agreement with

experimental results [5]. Even a quantitative comparison with the corresponding empirical

fits of [5] is surprisingly good despite obvious approximations we make in applying the current

configuration as a model for blood. In figure B.6 (b), we see that the effective viscosity

depends approximately linearly on channel width, which again agrees with experimental

findings for blood, matching both the slope over the range of W considered and values are

within 10%. It should be recognized in viewing these results that the present channels are

several basic blood cell radii ro across, and so we do not see the non-monotonic behavior

that would be expected for vessels matching the cell dimensions, though this too has been

reproduced with similar cell-scale simulations [4].

1 1.5 2 2.5 3

1.2

1.4

1.6

1.8

2

2.2

Hc

ξo

µ
e
ff
/µ

Hc

0.20
0.15
0.10
0.05

Figure B.7: Effective viscosity for several different cases of Hc and ξo. W/ro = 20,Ca = 1 for all
cases.

Looking beyond this flow as a model of healthy blood, which might best correspond

to ξo = 1.6, in figure B.7 we see that there is significantly richer behavior when ξo is

varied significantly. For all Hc, this nominal blood-like configuration ξo ≈ 1.6 yields a local

minimum µeff, with resistance increasing both toward smaller and larger ξo. The change is

most pronounced for the largest ξo ≈ 3.0 dog-bone geometries. In addition, capsules with

ξo ≈ 1.6 are also the least sensitive to changes of hematocrit: for ξo = 1.6, changing from

Hc = 0.05 to 0.20 increases µeff by only a factor of 1.08, whereas it increases by a factor of

1.17 for ξo = 1 and by 1.73 for ξo = 3. We investigate the mechanisms underlying these

observations in the remainder of the paper, and start here by recalling that the visualizations

in figure B.3 suggest that the large ξo dog-bone shaped cells do not form any significant

cell-free layer. It is well known that the presence of the cell-free layer decreases the effective
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viscosity of blood flow [162,399–402], which presents an obvious candidate mechanism for

the seemingly rapid increase in µeff with ξo.

B.4.4 Capsule-free layer

We define the capsule-free layer thickness h to include 1% of the collocation points representing

the capsule membranes. All results are insensitive to this specific threshold; because the

boundary between the nominally capsule-free layer and the capsule-rich region is relatively

sharp, changing this criterion to 15% resulted in less than a 0.5% change in h/W for typical

cases. In figure B.8, it is clear that ξo ≈ 1.6 discocyte geometries maximize the capsule-

free layer thickness, which would indeed reduce µeff. We also see that faster flow (Ca)

increases h for all cases with ξo . 2.0, similar to experimental observations for red blood

cells [162,399,403]. For ξo . 1.2 (nearly circular capsules), h decreases modestly, consistent

with experiments on hardened capsules and red blood cells [404, 405]. Most notable in

figure B.8, however, is that the sharp change to a much thinner layer for ξo & 2.0 suggests

a fundamental change in the microstructural flow dynamics, which is investigated more

thoroughly in section B.4.5.

1 1.5 2 2.5 3

0

0.02

0.04

0.06

0.08

0.1

ξo

h
/W

u∗

0.2
0.4
0.6
1.0

Figure B.8: Dependence of the capsule-free layer thickness on ξo and capillary number Ca, shown
for cases with W/ro = 20, Hc = 0.25.

B.4.5 Capsule orientation

We start our investigation of the capsule-scale flow structure by again considering the

visualizations in figures B.3 and B.4, noting that the ξo & 2.0 capsules appear to have a

tendency to fold, change orientation, and in certain cases apparently buckle. This seems to

disrupt the relatively ordered arrangements of ξo . 2.0 capsules, and corresponds with the
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apparent decrease of h. We start by considering the mean orientation angle and its variation

in the different cases.

α

α

Figure B.9: Schematic of model capsules (solid) and their respective fitted ellipsoids (dashed.)

A nominal orientation is quantified based upon the orientation of a fitted ellipse determined

by the eigensystem of

Mij =
1

l

∫

l

x′ix
′
j dS(x), (B.13)

where l is the capsule membrane length, and x′ is the surface position relative to the centroid:

x′ = x− xc. The eigenvalues λ1,2 and corresponding eigenvectors e1,2 of M define a fitted

ellipse,

x =
√

2λ1e1 sinψ +
√

2λ2e2 cosψ, (B.14)

where ψ ∈ [0, 2π]. The nominal orientation angle α is taken to be that between major axis

of the ellipse and the normal to the channel wall (see figure B.9).
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Figure B.10: Average orientation angle for varied ξo and flow strengths Ca. Hc = 0.25 and
W/ro = 20 for all cases.

The mean orientation 〈α〉 changes significantly for different ξo, as shown in figure B.10.

Nearly circular equilibrium geometries on average orient with 〈α〉 ≈ 45◦, corresponding to

the visualization in figure B.3. For ξo ≈ 1.6, corresponding to a discocyte type conformation,

〈α〉 ≈ 0, which has been seen in experiments [406,407]. However, the still more elongated

dog-bone shapes deviate abruptly from this behavior, starting at ξo ≈ 2.0, and tend to orient

themselves on average with 〈α〉 ≈ 15◦. This sharp deviation is of similar character to both

figure B.7 and B.8.

The visualizations in figure B.3 also suggest that the orientations also become more

varied for ξo & 2.0 as the capsules fold and appear to tumble, which we quantify by the

orientation variance

σα =
〈
αi − 〈α〉2

〉1/2

. (B.15)

Anticipating that σα depends on an apparent buckling-like mechanism discussed in sec-

tion B.4.6, which in turn is expected to be sensitive to the aspect ratio (slimness ratio) of the

capsules, we plot the orientation variance against the aspect ratio of the rest configurations

of the capsules: l1/l2. This is shown in figure B.11, and it is clear that there is a significant

and sudden increase in orientation angle variance in the range 4.5 . l1/l2 . 6.5, which

corresponds to 1.8 . ξo . 2.2. There is also an increase in σα for small ξo, which have

l1/l2 ≈ 1, but this is less consequential because l1 and l2 are nearly the same for small ξo,

and presumably due to the fact that relatively minor perturbations can change the nominal

orientation of an ellipse fitted to a nearly round capsule.
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Figure B.11: Variance of orientation angle σα as a function of configuration aspect ratio and capillary
number for W/ro = 20 and Hc = 0.25. The vertical dashed lines represent approximate geometry
and behavioral regimes as indicated.

B.4.6 Buckling

To explore the apparent buckling of the capsules in channel flow, we consider it in two more

idealized flow configurations. The first is a Taylor–Green flow (figure B.12 (a)), with velocity

components

Ux = A sin

(
2π

L
x

)
cos

(
2π

L
y

)
, (B.16)

Uy =−A cos

(
2π

L
x

)
sin

(
2π

L
y

)
, (B.17)

where A is the flow strength and L = 80 ro is the periodic length of the square domain; it

was confirmed that results were independent of this computational domain within ±40 ro.

A single capsule is placed vertically at the stagnation, such that it will be compressed by

the flow as shown in figure B.12 (a). A small perturbation is applied to the shape of the

membrane just before the flow is imposed, with

xpert = x+ ε sin10

(
y π

l1

)
, (B.18)

where ε = 0.01ro and as before l1 is the longest at-rest membrane dimension. In this flow

model, the magnitude of the relevant velocity scale is given by the velocity difference across

the capsule. The second flow is the homogeneous shear shown in figure B.12 (b), which was
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imposed in the usual way [67, 408]. The relevant velocity scale is again given by the velocity

drop across the capsule; in the case of homogeneous shear this is Ushear = γ̇` where γ̇ is the

shear rate and ` is the vertical distance across the capsule. The capsule is initialized in its

equilibrium shape and positioned at 25◦ from the horizontal (as shown in figure B.9), though

we verify that our results produce a consistent onset of buckling for deviations of ±15◦ of

this initial angle.

(a)

γ̇

(b)

Figure B.12: Auxiliary flow configurations: capsules in (a) Taylor–Green stagnation point flow and
(b) homogeneous shear.

The visualizations of figures B.3 and B.4 show several examples of nominally buckled

capsules. This is quantified based upon the principal axes of the fitted ellipses: λ ≡ λ1/λ2,

where λr is the equilibrium value for a particular ξo. A buckled capsule will transition from

elongated (λ ≈ λr) to larger λ, up to λ . 1. Some example λ values for different shapes are

included in the visualizations of figure B.4).
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Figure B.13: Buckling parameter λ ≡ λ1/λ2 from (B.14) for representative biconcave ξo = 1.6
capsule and a dog-bone ξ = 2.6 capsule. Dashed lines show the equilibrium λ = λr condition. In
both cases, Hc = 0.25, Ca = 1.0 and W = 20ro.

We see in figure B.13 that an example λ(t) history for a ξo = 2.6 capsule has four large

spikes, each reaching near λ = 1, indicating four buckling events. This behavior is typical of

these capsules. During the course of the simulations nearly all dog-bone geometry capsules

are observed to buckle at least once, and typically about 20% of them are buckled at any

given time. A corresponding biconcave ξo = 1.6 case also shown in figure B.13 has a nearly

constant λ for its entire history. To provide a specific metric, we take λ ≥ 5λr to be buckled.
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Figure B.14: Scaling of critical buckling aspect ratio due to forcing F ∗ due to the fluid. Visualizations
show examples from the different flow fields for ξo = 2.8,Ca = 1. The channel has W/ro = 20 and
Hc = 0.25. The straight lines are power-law fits F ∗ ∼ l−bc with b = 2.65 for the channel, 1.82 for the
stagnation flow, and 1.82 for the homogeneous shear.

To compare the different configurations, we defined a non-dimensional critical force,

F ∗ ≡ F/µUlo where U is the relevant velocity scale as described previously. For Euler

buckling, this should scale as F ∗ ≈ 1/l2c , though there is no expectation that the present

capsules should exactly follow this criterion developed for solid long, slender objects. Indeed,

one might anticipate that the model capsules be better described as approximately axially

loaded shells, which have a power-law buckling threshold l−bc with 1 < b < 2 [409, 410].

In figure B.14, for the stagnation point flow, we find F ∗ ∼ l−1.82
c and for the shear flow

F ∗ ∼ l−1.84
c . The channel flow shows more ready buckling, with l−2.65

c , possibly due to

the finite-amplitude disturbances arising from capsule-capsule and capsule-wall interactions.

Studies of red cells show in-plane reversible buckling of healthy cells does occur in an optical

trap [411].

B.4.7 Influence of buckled capsules and their kinematics

Buckling behavior also corresponds to a fundamental change in other kinematic behavior of

the capsules. Figure B.15 (a) and (b) contrast the y–t trajectories of five arbitrarily selected

capsules for ξo = 2.6 and ξo = 1.6 cases. It is clear that the ξo = 2.6 capsules undergo much

more lateral migration than the ξo = 1.6 capsules. The buckled capsules appear to roll in

the flow, which is confirmed by plotting their orientation angle history α(t), as computed in

section B.4.5, in figure B.15 (c) and (d). In figure B.15 (c), a ξo = 2.6 capsule that repeatedly

buckles (based on λ > 5λr) continually changes angle relative to one that does not. These

sudden changes of orientation seem to cause disruptions in the flow, which have consequences
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of increased interactions with nearby capsules, apparent reduction of cell-free layer thickness,

and an increase of effective viscosity. For the corresponding non-buckling ξo = 1.6 case, the

capsule angles are typically much less varied (figure B.15 (d)).
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Figure B.15: Transverse position for five representative biconcave and dog-bone capsules with
Hc = 0.25,W/ro = 14 and Ca = 1.0. The orientation of a buckled (c, dotted) versus non-buckled
dog-bone capsule (c, solid) are shown as defined (see text) and shown in figure B.13, as well as the
orientation of a biconcave capsule (d).

We statistically analyze the overall behavior associated with the specific examples of

figure B.15 by computing the average transverse velocity of the capsules ẏ. This provides a

measure for the lateral migration of the different capsule geometries. We also quantify the

mean absolute transverse distance traveled,

∆y =
1

N

N∑

i=1

max
j,k
|yi(tj)− yi(tk)|, (B.19)
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as another measure of this. It should be noted that ∆y, as defined, is dependent upon the

time over which (B.19) is calculated; here a capsule advected at speed U would have traveled

a streamwise distance of 18L/ro. In figure B.16 there is an apparent jump to large ∆y and

〈ẏ〉, for ξo & 2.0, which agrees with the apparent distinct behavior shown in figure B.15

and particularly figure B.11, which shows the rapid increase in capsule-angle variance for

ξo ≈ 1.9. This seems to be a distinct change in mechanism where the behavior of 〈ẏ〉 and ∆y

scale approximately logarithmically for circular and biconcave geometries, but are constant

for elongated capsules (ξo & 2.0). For the cases simulated in figure B.15, it is found that

capsules that buckle during the course of the simulation experience approximately 1.4 times

more vertical migration as an average non-buckling capsule (see figure B.15), which then

have a proportionally larger hydrodynamic influence on other capsules in the flow.
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Figure B.16: The average transverse velocity of the capsules 〈ẏ/U〉 and transverse displacement
∆y/ro from (B.19). We also show ∆y for capsules that have buckled at least once during the course
of the simulation, (∆y/ro)b.

B.4.8 Hydrodynamic interactions

The kinematic observations of the previous subsection suggest that large ξo capsules buckle

more readily, leading to rolling motion and greater transverse transport. Though the

interaction dynamics are intricate, we can quantify some of their basic characteristics via

multipole moments of the capsules hydrodynamic influence [159,346]. These are defined by

expanding the Stokeslet Sij in (B.8) about the capsule centroid x′ = 0,

Sij(x− x′) = Sij(x)− x′k
∂Sij
∂xk

(x) + · · · (B.20)
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where x is a point far from the capsule such that |x| � |x′|. When substituted into the

boundary integral equation (B.7), it reduces to

ui(x)− Ui(x) = − Fj
8πµ

Sij(x) +
Qjk
8πµ

∂Sij
∂xk

(x) + · · · , (B.21)

where Fj is the hydrodynamic drag force and Qjk is the first moment of the traction about

the capsule membranes Ω,

Qjk =

∫

Ω

(σjlnl)x
′
k ds. (B.22)

Splitting Qjk into its symmetric and skew-symmetric parts,

Qjk = Gjk +Rjk, (B.23)

yields the symmetric stresslet Gjk and skew-symmetric rotlet Rjk, which is associated

with the hydrodynamic torque. These provide a means of estimating to leading order the

contribution of stress and rotation to the hydrodynamic influence of each capsule.

In figure B.17 we plot the norms ‖G‖ =
√
GijGji and ‖R‖ =

√
RijRji for increasing

ξo. The leading-order stresslet contribution has a minimum for nearly circular capsules

ξo ≈ 1.0, as expected because they are compact and seemingly interact with the flow the

least (see figure B.16), and more interestingly a local minimum at ξo ≈ 2.0. At this point

it seems that potential tank-treading motions are balanced by a tumbling behavior of the

elongated capsules. Hydrodynamic interactions are then minimized for very nearly circular

geometries, and locally small for biconcave 1.5 . ξo . 2.0 configurations. This seems to have

the implication that capsules with 1.2 . ξo . 1.5 have decreasing resistance to traveling

through narrow confines. In contrast, Rij becomes relatively stronger only for ξo & 2 due to

the elongated capsule membrane, and corresponds to the onset of buckling and increasing

effective viscosity.
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Figure B.17: Stresslet Gij and rotlet Rij strengths for different ξo for Hc = 0.20, Ca = 1 and
W = 20ro.

B.5 Conclusions

The role of capsule reduced area was studied in regard to the dynamics of capsule suspensions

flowing in narrow confines. A two-dimensional model system was studied, so no quantitative

one-to-one correspondence is expected with actual three-dimensional capsules systems.

However, its success at reproducing important known phenomena suggests that it can be

informative for realistic configurations, including blood flow.

The principal observation was a sudden change in the suspension behavior for capsules

with membranes with equilibrium lengths about twice, ξo ≈ 2, that of the minimum. This

was manifested in the overall rheology as quantified by a significant jump of the effective

viscosity of the suspension. Corresponding changes observed at the capsule scale for ξo & 2.0

were a significantly diminished cell-free-layer thickness, significant variation in in the capsule

orientation, increased lateral transport, and increased leading-order rotlet contribution to

multipole expansions. These observations corresponded to the onset of a buckling behavior,

which were shown to scale with capsule aspect ratio consistent with expectations for shell

membranes.
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C Stability of capsule trains
flowing within channels: a
two-dimensional study
Repeated here is the two-dimensional study of capsule trains flowing within channels, as

previously published [158]. The specific configuration is introduced in section C.1. The

numerical methods appropriate for this two-dimensional system, both for constructing the

linearization and for the corresponding direct numerical simulations (DNS), are summarized

in section C.2. The stability formulation is outlined in section C.3. Amplification rates and

corresponding most-amplifying disturbances for relatively wide and narrow channels with both

large and small capsule-packing fractions are summarized in section C.4. These perturbations

are examined in regard to transition to nonlinear behavior in section C.4.5, which includes

DNS simulations of their evolution into an apparently chaotic flow. Small disturbances that

are particularly subject to transient growth—the nominally ‘most dangerous’ disturbances

as often discussed for boundary layers [238–240]—are shown to lead to nonlinearity and

chaos as much as 1000 times faster than the most asymptotically unstable disturbance. For

efficient design of devices and methods that maintain organization by avoiding instabilities,

it is essential to consider such disturbances, as has also been recognized in other flows

[242,412–415]. Ad hoc random perturbations of the same displacement amplitude grow still

much more slowly, suggesting that the specific most amplifying disturbances are of principal

importance. Capsule-train stability is shown sensitive to capsule flexibility in section C.4.6,

where we also investigate the deformation energy that accompanies the different disturbances.

C.1 Two-dimensional model system

The model capsule–flow system is shown in figure C.1. A streamwise-periodic channel of

length L and width W contains N capsules suspended in a viscosity µ Newtonian fluid

flowing with mean speed U . Each capsule has area A = πr2
o and a zero-stress perimeter

lo = 1.6× 2πro, such that its biconcave equilibrium geometry is similar to the cross-section

of a resting red blood cell. The capsules are initialized in their at-rest equilibrium geometry

and uniformly spaced along the channel centerline in a one-dimensional train with packing

ratio

φ ≡ Nro
L

, (C.1)

which is varied from dilute φ = 0.2 to nearly jammed φ = 0.7. Most results are presented

for the relatively narrow W = 10ro and relatively wide W = 40ro channels visualized in

figure C.2. Channel lengths are varied from L = 10ro to 500ro, with numbers of capsules

correspondingly varied from N = 2 to 100. Results will show that an apparent asymptotic
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Figure C.1: (a) The model channel flow with mean flow U containing N capsules of area A = πr2
o

and perimeter lo = 1.6 × 2πro. (b) An empirically stable single-file train in a narrow W = 4ro
channel, (b) an empirically unstable train in a W = 10ro channel, and (d) its transition into an
apparently chaotic flow.

large-L behavior is achieved for N & 20, which motivates particular focus on cases with

N = 30. We restrict our investigations to this ordered and regular capsule train, such as

might be generated by more narrowly confining upstream geometries. No attempt is made

to identify stable states that might exist in wide channels, such as apparently seen in some

staggered arrays of immersible droplets. [181]

Each capsule is defined as an elastic shell that resists tension with linear modulus T
and bending with linear modulus M. Thus, for arc-length coordinate s(so) and stress-free

reference coordinate so, the membrane tension τ and bending moment b are

τ = T
(

ds

dso
− 1

)
and b =Mκ, (C.2)

where κ is the curvature. Though these are linear relations, we emphasize that the net

traction on the fluid due to the capsule membranes includes all geometric nonlinearity as

∆σ =
∂tτ

∂s
+

∂

∂s

(
∂b

∂s
n

)
, (C.3)

where t is the membrane unit tangent and n is its outward directed unit normal. We note

that this specific model has been used in previous capsule model systems [132,165]. Although

it neglects some nonlinear contributions to the full Helfrich strain energy, [384] results have

confirmed that these terms are unimportant in flows with still more significant strains. [132]

Matching the suspending fluid, the fluid within the capsules is also taken to be Newtonian

with viscosity µ. Red blood cells are thought to have an elevated cytosol viscosity [12,14],

though it has been shown that a matched viscosity model reproduces phenomena in two

dimensions [132,165,416] and provides quantitative agreement for the suspension effective

viscosity in three dimensions [70, 144]. This simplification has reproduced many of the

qualitative features of actual red-blood-cell flow in three dimensions, including the F̊ahraeus–
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(b) φ = 0.2,W = 40ro
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Figure C.2: Base configurations.
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Lindqvist effect, the margination of larger stiffer capsules, the blunted mean velocity profile,

and the non-monotonic dependence of the effective viscosity on vessel size. [144,310]

The relative flexibility of the capsules is quantified with a capillary-number-like parameter,

Ca ≡ µUr2
o

M , (C.4)

which can be interpreted as a ratio of a capsule relaxation time to advection time. For

most results, we take Ca = 15.2; the relative importance of flexibility this parameterizes

is investigated in section C.4.6. The tension modulus is relatively large compared to the

bending modulus,
r2
0T
M = 50, (C.5)

which provides a large tensile stiffness to model the near incompressibility of many capsule

membranes. Baseline configurations are obtained by simulating the flow without perturba-

tions for time t = 5 roµ/T , which is sufficient for the capsules to each assume the steady

flow-deformed geometries seen in figure C.2.

C.2 Numerical methods

The Reynolds numbers of cell-scale blood flow, or similar capsule suspensions in microfluidic

devices, is small Re . 0.01, [70] so inertia is neglected in the present study, which enables a

boundary integral formulation of the flow equations [159,311]. To evaluate velocities, we use

the same particle-mesh-Ewald (PME) algorithm generalized for Stokes flow [408] as used

in previous studies [132,165]. It is built upon periodic-space Green’s functions [368], with

the no-slip condition at the channel walls enforced via a penalty method. [165] Consistent

with the neglect of fluid inertia, the mass of the capsule membranes is likewise neglected. As

such, the membrane position x(t) is simply advected as [70]

dx

dt
= u

(
x(t)

)
, (C.6)

where u(x) is the local velocity calculated from the boundary integral equation. The time

dependence of u comes only through the membrane geometry x(t). Although the constitutive

model and viscous flow equations are themselves linear, in considering (C.6) it is important

to recognize that u(x) still includes nonlinearities associated with the geometric factors

contributing to the surface tractions (C.3). These expressions are evaluated numerically

using Fourier methods, [165] with each capsule discretized by n = 25 collocation points

except when noted. The full list of M = nN total collocation points is represented by the

notation ~x ≡ {x(1)
1 , x

(1)
2 , . . . , x

(M)
2 }. Nonlinear operations are computed with four times this

amount to counter aliasing errors [4, 70]. A second-order Runge–Kutta scheme is used to
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integrate (C.6) in time, which is crafted for the collocation points as

d~x

dt
= ~u(~x) or, equivalently

dx
(α)
i

dt
= u

(α)
i (~x) for

i = 1, 2

α = 1, . . . ,M

, (C.7)

with time step ∆t = 0.001µro/T .

As they evolve and interact, capsules can come into near contact. Although the boundary

integral formulation is unrestricted in this regard by any underlying volume (area) filling mesh

discretization, accumulation of even small numerical errors can lead to erroneous interactions

between nearby capsules, particularly if the inter-capsule spacing becomes comparable to

the capsule surface collocation point spacing. In the long DNS simulations of subsequent

behavior, this is countered by introducing a regularizing short-range repulsion between

membrane collocation points. We employ the same formulation as past efforts [132,165], with

forces zero beyond distance 0.2ro. However, this force is not part of the stability analysis, so

the principal results of this study are wholly independent of it.

Similarly, in the course of long simulations the area of the capsules can also change

via the accumulation of small numerical errors, though this happens slowly since area is a

low-order moment of the capsule shape and therefore well resolved. Still, a weak variational

correction is used to preserve constant capsule areas indefinitely [165]. This also is only

included for the DNS simulations, so the stability results are likewise independent of it.

C.3 Stability analysis formulation

C.3.1 Measure of configurational stability

Since the goal is to describe the geometric disruption of capsule trains, the measure describing

the growth of instabilities is based on the membrane displacement from its unperturbed

uniformly advecting baseline configuration. For perturbations applied at time t = 0, this is

ε(t) = x(t)− xb(t), (C.8)

where xb(t) represents the corresponding unperturbed case described in section C.1. The

overall disturbance amplitude is quantified by

‖ε‖ =

∫

all C

(ε · ε)1/2 dl, (C.9)

where C are the capsule membranes. This measure is not unique, and no unique measure is

expected to exist for so complex a system, [234] though it is appropriate for our objectives

since x fully describes the system state and ε directly describes the geometric disruption

we study. In essence, it matches the corresponding metrics used previously for the stability
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of settling spheres. [177,180] This measure obviously does not correspond to a mechanical

energy, as is available for finite-Reynolds-number incompressible fluid flow, and thus lacks the

additional conservation properties such an energy-based measure would embody. The capsules

do store strain energy, but any measure that includes it would also introduce an additional

challenge in that strain energy is invariant to capsule translation or rigid-body rotation. Such

constant-energy perturbations, which we anticipate might be hydrodynamically important

for seeding instabilities (and indeed are in cases), do not correspondingly perturb the strain

energy. Thus, we do need to be mindful that equal ‖ε‖ disturbances do not necessarily

correspond to equal mechanical energies. This is revisited in section C.4.6, where the elastic

energies corresponding to most amplifying perturbations are considered.

C.3.2 Linearization

Since ~u(~x) couples all the capsule and wall collocation points, which therefore includes

significant nonlinearity due to geometric factors, direct linearization of (C.7) is challenging.

However, it is straightforward and equally effective to construct a corresponding linearized

system through numerical evaluation of u(x) in (C.7). Expanding (C.7) for small positional

perturbation ~δ yields

∂(~x+ ~δ)

∂t
= ~u(~x+ ~δ) =

∂~x

∂t
+A(~x)~δ +O

(
‖~δ‖2

)
, (C.10)

where A thus includes the first-order coupling for the present ~x configuration due to

perturbation ~δ. In practice this is constructed by systematically perturbing the system and

evaluating the velocity. Specifically, each column of A is calculated by perturbing one of

the collocation points α ∈ {1, . . . ,M} in one of the coordinate directions i ∈ {1, 2} and

calculating ~u(~x+~δ). Since only the (i, α) component of the 2M -length vector list ~δ in (C.10)

is perturbed (by δ),

δ
(β)
j =




δ for j = i and β = α,

0 otherwise
, (C.11)

which provides the i–α column of A as

A
(αβ)
ij =

u
(β)
j (~x+ ~δ)− u(β)

j (~x)

δ
for j = 1, 2 and β = 1, . . .M. (C.12)

Repeating this for all collocation points and both coordinate directions yields all columns of

A. The translation of the baseline train of capsules due to the mean flow is common to the

perturbed and unperturbed ~u in (C.12), so it does not contribute to A. It is confirmed that

results are independent of the δ = 10−5ro used here.

Generating the full 2M×2M matrix A in this way requires about the same computational

effort as 2M numerical time steps of the flow solver and would be prohibitive in many

numerical flow solutions. For the particular configurations we consider, periodicity of the

domain and the identical character of all the capsules can be exploited to reduce this to

2M/N . An advantage of the boundary integral discretization is that only the surfaces

of the capsules are discretized so this is not an insurmountable calculation. The use of

94



high-resolution Fourier methods further reduces the number of points necessary to accurately

represent the membranes and thus describe the stability through A. The largest case

presented here has 2M = 105, which is comparable to the number of time steps of a typical

direct numerical simulation of this system.

With A, the evolution of any sufficiently small perturbation ~ε is governed by the linear

system

∂~ε

∂t
= A~ε, (C.13)

with matrix-exponential solution

~ε(t) = ~εo expAt , (C.14)

for initial condition ~ε(0) = ~εo. The expAt factor thus describes its temporal behavior.

C.3.3 Eigensystem

The matrix A is real and non-symmetric (AAT 6= ATA), as can be anticipated by the

character of the vector Green’s function of the Stokes operator, so in general it will not have

a full set of orthogonal eigenvectors. Eigenvalues for a typical configuration are shown in

figure C.3. Nearly all of their real components are negative, as expected for a predominantly

viscous system, though 75 of the 1000 total in this example do have positive real components,

indicating asymptotic instability. The most amplifying is real-valued and corresponds to a

tilting perturbation we analyze subsequently.
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Figure C.3: Eigenvalues of A for W = 40ro and φ = 0.7 with N = 20 capsules.

Though it is not diagonalizable, the eigensystem of A does dictate the t→∞ behavior

of small perturbations, so long as they do not trigger significant nonlinear interactions before

this behavior is realized [235]. Here we consider its behavior for this reason, in addition to

using it as a point of reference with respect to predicted transient growth, which we consider

in the following subsection. With ~λ(A) representing the 2M eigenvalues of A, the nominal

spectral abscissa of the system is its most amplifying component:

α ≡ max
{

Re
[
~λ(A)

]}
. (C.15)
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The corresponding most amplifyied eigenvalue and its associated eigenvector are defined as

λα and ~sα, respectively. For t→∞, an initial perturbation ε(0) = ε̂ sα will evolve as

ε(t) = ε̂sα expλαt. (C.16)

C.3.4 Non-modal analysis

Following a common reasoning [234, 320], a t→ 0+ amplification bound is defined by the

numerical abscissa,

η ≡ max

{
Re

[
~λ

(
A+AT

2

)]}
, (C.17)

which recovers η = α for normal A. This is the maximum initial amplification of any

perturbation, though this growth rate will not necessarily persist.

In addition to the short-time growth rate, of particular interest is the form of the most

amplifying perturbation and the most dangerous growth at later times. This is determined

via a singular-value decomposition,

expAt = UΣV T, (C.18)

where the ordered singular values ~σ(t) form the diagonal matrix Σ, and U and V are

matrices constructed of orthonormal left and right singular vectors, respectively. Though

non-normality couples the linear disturbances, their maximum time-dependent evolution can

be tracked by reevaluating (C.18) as a function of time,

G(t) ≡ ‖expAt‖ = max
j,β

σ
(β)
j (t). (C.19)

The corresponding instantaneous maximum growth rate is then,

ζ(t) ≡ d logG(t)

dt
. (C.20)

For t→∞, this should converge to the eigenvalue associated with the least stable eigenvalue

ζ → α, and for t → 0+ it converges to the maximum transient amplification ζ → η. If

ζ(t) > α for any range of t, transient growth can outpace asymptotic eigensystem growth in

that range.

C.3.5 Character and verification of the linear system

The evaluation of A and its analysis is intricate, so it is important to verify that it indeed

represents a linearization of the full system. This also serves to introduce the basic behavior

we will see in most of the results. For verification, linear predictions based on A are

compared with full DNS calculations for small perturbations. For φ = 0.2 and W = 10ro,

we compare the predicted growth of ‖~ε‖ for ε̂ = 10−10ro perturbations against the DNS for

different initial conditions. Before nonlinear effects manifest, which is avoided with ε̂ so

small, agreement should be limited only by the accumulation of numerical approximation
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Figure C.4: Perturbation amplification in time: (A) The transient growth based on maximum
time dependent amplification ζ(t) from (C.20) for initial perturbation ε̂~vη; (B) direct evaluation
of the matrix exponential expAt from (C.14) for ε̂~vη, which matches (C) from the corresponding
DNS; and (D) expαt for ε̂~sα from (C.16), which matches the large t behavior of (E) from the the
corresponding DNS.

errors. For numerical evaluation, ‖ε‖ from (C.9) is approximated as

‖~ε‖ =
1

M

M∑

i=1

√[
ε

(i)
x

]2
+
[
ε

(i)
y

]2
. (C.21)

Two main verification comparisons are made in figure C.4. For the initial perturbation ε̂~vη,

the predicted cumulative amplification based on ‖expAt‖ is compared with the corresponding

DNS and shown to agree (curves B and C). We also see that both match the t→ 0+ prediction

based upon ζ(t → 0), and that for t > 0 they are indeed bounded by this. The second

comparison is for the t→∞ behavior, based on α for initial condition ε̂~sα and a corresponding

DNS. These also agree (curves D and E in the figure) in that they overlap at long times,

with relative amplification difference less than 5 percent at t = 10 roµ/T and less than 2

percent at t = 100 roµ/T . Note that their good agreement at all times, not just for t→∞,

indicates that in this case ~sα itself is not strongly coupled with other linear disturbances.
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Figure C.5: Evolving maximum growth rate ζ(t) analyzed in figure C.4.

In figure C.5, we see that at short times ζ(t) significantly exceeds α, confirming the small

t behavior of figure C.4. At later times, we likewise confirm that ζ → α, as it should. Despite

the long-time behavior, we anticipate that for finite perturbations, the rapid transient growth

might be a significant mechanism leading to nonlinear saturation and subsequent disruption

of the capsule train. This is considered in section C.4.5. In the following section we examine

the character of the most amplifying disturbances.

We consider transient amplification in the following section C.4.1 and long-time asymptotic

amplification in section C.4.2 for the four base flows visualized figure C.2. Additional

configurations are introduced in section C.4.3 to map the boundaries between different

disturbance-form regimes. The narrow channels of these configurations are insufficient to

preserve the regularity of the capsule trains, so for comparison we also introduce a very

narrow channel with W = 4ro in section C.4.4. In this case, the capsule train persists,

seemingly indefinitely, and we characterize its apparent stability.

C.4 Results

C.4.1 Transient amplification

Figure C.6 shows the initial transient amplifications η from (C.17). In all four cases, η

depends, at least weakly, upon the channel length, with an apparent asymptotic long-L

power-law behavior for sufficiently large L. For all cases, the power laws provide good fits for

N & 20 capsules, suggesting that in this limit the discrete character of the capsules per se

becomes relatively unimportant, as might be expected for 20 capsules per wavelength of the

disturbances. An implication is that an effective medium model and continuous dispersion

relation might afford a reasonable description of the response, though we do not pursue

this here. The apparent non-integer power laws in figure C.6 suggests the existence of an

anomalous dimension, [417] though its specific form has not been found.
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For both φ and larger L, the narrow channels are significantly more amplifying. However,

this behavior is different in shorter channels. For small L, the proximity of the walls appears

to be less important, and we see about a factor of five more significant transient amplification

for the more densely packed channels, irrespective of width, suggesting that capsule–capsule

interactions themselves are most important in this limit. Still, the amplification rates for

shorter channels are much smaller than those in most of the longer channels.

101 102

101

102
∼ L2.24

∼ L2.13

∼ L1.98

∼ L0.19

L/ro

η
r o
µ
/
T

W = 10ro, φ = 0.2
W = 40ro, φ = 0.2
W = 10ro, φ = 0.7
W = 40ro, φ = 0.7

Figure C.6: Numerical abscissa η from (C.17) for different lengths L for the channels of figure C.2.
The straight lines are power-law fits.

With such different behavior in the amplification rates, it is not surprising that the

corresponding t→ 0+ most amplifying disturbances visualized in figure C.7 show diverse

structures. The φ = 0.2 wide channel case visualized in figure C.7 (b) shows a longitudinal

displacement wave, with each capsule displaced in the streamwise direction without obvious

change of shape. As such, the overall disturbance appears as a compression–expansion

wave of the capsule spacing. The other disturbances visualized in figures C.7 (a), (c) and

(d) appear primarily as distortions of individual capsules, although consistent with the

L-dependencies of figures C.6, these also manifest as wave-like perturbations correlated

across all the capsules. They are asymmetric for the narrow channels in figures C.7 (a) and (c)

and symmetric in figure C.7 (d). Similar long-wavelength disturbances are most amplifying

for capillary instability of low-Reynolds-number core-annular flows, [418, 419] though we

do not pursue any possible correspondence to this configuration herein. We note that such

disturbances that distort individual capsules are hard to visualize. For genuinely small ε̂, for

which the linear approximation is quantitatively accurate, they would be imperceptible if

plotted as ~x+ ε̂~vη. For visualization, they are therefore artificially increased by a factor a

as ~x+ aε̂~vη, which makes them visible but unfortunately also distorts their shapes, which

leads to a kinky appearance due to geometric nonlinearities. These visualizations should be
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A B

(a) φ = 0.2,W = 10 ro — Asymmetric deformation
A B

A

(b) φ = 0.2,W = 40 ro — Longitudinal translation
A

A B

(c) φ = 0.7,W = 10 ro — Asymmetric deformation
A B

A B

(d) φ = 0.7,W = 40 ro — Symmetric deformation
A B

Figure C.7: Most transiently amplifying (non-modal) disturbances for the baseline cases with N = 30
of figure C.2: – – baseline ~x and perturbations visualized as — ~x + aε̂~vη with aε̂ = 3.5. These
relatively large amplitudes aid visualization, though some of the features appear exceptionally sharp
due to geometric nonlinearity. The A and B labels indicate the specific magnified capsules.

construed as showing the approximate direction and relative amplitude of the membrane

perturbation, not strictly the membrane shape.

Motivated by these visualizations, we quantify the disturbances with low-order moments

of each capsule shape C. These are selected to emphasize their main apparent characteristics:

xc =
1

lo

∫

C

εx dl (C.22)

yc =
1

lo

∫

C

εy dl (C.23)

Mx =
1

lor2
o

∫

C

ε3
x dl (C.24)

My =
1

lor2
o

∫

C

ε3
y dl (C.25)

Mxy =
1

loro

∫

C

εxεy dl, (C.26)

where x is the streamwise and y is the cross-stream coordinate, as labeled in figure C.1.

Third-order rather than second-order moments are used for Mx and My to preserve the

sign of the perturbation. The relative values of (C.22) through (C.26) are plotted for all

capsules in figure C.8. These confirm predominance of particular moment contributions for

the different cases, as might be anticipated from the visualizations. Their wave-like character

again suggests that a continuum model might afford a natural way to analyze the behavior

of the dominant transient disturbance (and its asymptotic analog—see figure C.11) if an
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effective material model or averaging procedure could be deduced. This is not attempted

here.

C.4.2 Asymptotic amplification

The maximum asymptotic amplification rates α, corresponding to the same four cases of

figure C.2, are shown in figure C.9. These growth rates are all slower than the corresponding

η, typically by over a factor of 10. Again, for sufficiently long L, the more narrow channels

also show length dependence, though with different powers than for η. However, the wider

channels do not, at least for up to the 100 capsules considered. This is true even when the

channel length is many times its width. The more narrow W = 10ro channels are most

amplifying for all L. For φ = 0.2, its L dependence is similar to the transient behavior

η ∼ L2, though for φ = 0.7 it is less sensitive to L, with α ∼ L3/4 rather than matching

η ∼ L2.

Given these diverse asymptotic amplification rates, we again anticipate different characters

for the corresponding disturbances visualized in figure C.10. Both the wide channels

(figures C.10 b and d) show a predominantly tilting disturbance, in which all the capsules

collectively tilt. The uniformity of this tilt rate is confirmed to be Mxy dominant in

figures C.11 (b) and (d). Their lack of a streamwise wave-like structure (constant Mxy) is

consistent with the α ∼ L0 behavior seen for both these cases. In contrast, both the narrow

channel configurations show a wave-like transverse displacement, also different from the

corresponding most amplifying transient disturbances though still sinuous. These are My

dominant, as seen in figures C.11 (a) and (c).

C.4.3 Disturbance regime boundaries

The diverse most transiently and asymptotically amplifying disturbances seen in figures C.7

and C.10 suggest a more complete mapping of the configuration parameters to identify

boundaries between these regimes. These are illustrated in figure C.12 for ranges of φ

and W , where the nominal disturbance character is based on the maximum values of the

(C.22) through (C.26) metrics. Only the non-uniform tilt in figure C.12 (b) was not directly

observed in our four focus cases. It shows an obvious L-periodic wave-like variation to the

uniform tilt seen in figure C.10 (b) and (d).

C.4.4 An empirically stable, narrow-channel configuration

Figure C.13 shows that in this case the capsules bend into a two-dimensional analog of

the bullet-like shapes seen in blood cells, and empirical observations from long-time DNS

simulations suggest indefinite persistence of this single-file flow, even when perturbed. (In

this case N = 35 was used to resolve the more significant capsule deformations.) We analyze

this case for comparison. Despite the empirical stability, linear analysis suggests both

transient amplification (η = 0.28) and asymptotic instability (α = 0.0018), though these are

at least seven times smaller than those seen for the wider channels (figure C.6 and C.9).

Similar to wider channels, the corresponding ~vη show asymmetric distortion reflected by My
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(d) φ = 0.7, W = 40ro

Figure C.8: Disturbance metrics (C.22) through (C.26) for all j = 1, . . . , N capsules for N = 30
applied to the most amplifying transient disturbances visualized in figure C.7. All metrics are
plotted for all cases, normalized by the largest value of any.
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Figure C.9: Spectral abscissa α from (C.15) for different for cases of figure C.2. The straight lines
are power-law fits.
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(a) φ = 0.2,W = 10 ro — Transverse translation
A

A

(b) φ = 0.2,W = 40 ro — Uniform tilt
A

A

(c) φ = 0.7,W = 10 ro — Transverse translation
A

A

(d) φ = 0.7,W = 40 ro — Uniform tilt
A

Figure C.10: Most asymptotically (t → ∞) amplifying modal disturbances for the baseline case
with N = 30 visualized in figure C.2: – – baseline ~x and — perturbations visualized as ~x + aε̂~sα
with aε̂ = 3.5. The selected magnified in capsules are labeled accordingly.
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(d) φ = 0.7, W = 40ro

Figure C.11: Disturbance metrics (C.22) through (C.26) for all j = 1, . . . , N capsules for N = 30
applied to the most amplifying transient disturbances visualized in figure C.10. All metrics are
plotted for all cases, normalized by the largest value of any.
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(a) Disturbance character for most transiently amplifying disturbances ~vη
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(b) Disturbance character for most transiently amplifying disturbances ~sα

Figure C.12: Character of the most amplifying disturbances for a range of channel widths and
packing fractions as labeled.
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(figures C.13 b and d), whereas the ~sα shows a capsule-to-capsule varying mix of tilt and

asymmetric distortion, which is strongest for a particular capsule (j = 7 in figure C.13 c and

e).

The amplifications of different disturbances are shown in figure C.14. While DNS

simulations initialized with ε̂~vη and ε̂~sα do indeed initially reflect the predicted linear

growth, as they must, it does not persist, presumably due to nonlinear effects. The upper-

bound ζ(t) growth is not realized and the ~sα disturbance likewise saturates also due to

nonlinear effects associated with tight confinement. The approximately constant ‖~ε‖ reached

in this case at long times is consistent with a persistent tilt of the membrane from its initial

orientation, though the capsule returns to the same bent shape. Thus, although this case is

linearly unstable, significant linear amplification is not realized, and might not be expected

given the obviously limited range of permissible motions for such tightly confined capsules.

C.4.5 Transition to disordered flow

An important potential consequence of the relatively fast predicted transient growth seen in

most cases is that it can significantly reduce time to the onset of significant nonlinear effects.

A specific example is shown in figure C.15 for φ = 0.7, W = 40ro. The DNS simulation with

initial perturbation ε̂ = 0.001ro (curve D in the figure) shows brief transient growth, but

it does not lead directly to obvious nonlinear behavior. Instead, the growth nearly ceases,

because only a small portion of ~ε is associated with the disturbances that are amplified in this

transient regime. It is only after t & 1000roµ/T that it again amplifies significantly, and then

at a rate consistent with the t→∞ asymptotic α-curve (C). Before this occurs, it remains

bounded by the ζ(t) prediction (curve B). In contrast, for a still small but larger ε̂ = 0.01ro,

the initial condition ε̂~vη perturbation leads to nonlinearity much earlier, about 103 times

faster than would the t→∞ mechanism for ~sα, even with the initial condition ε̂~sα. Both

the ε̂~vη and ε̂~sα initial conditions show nonlinear saturation well before a corresponding ad

hoc perturbation constructed as random ε̂δyc displacements of the capsule centroids. This

ad hoc perturbation saturates 100 times more slowly still (curve G).

The subsequent DNS transition to an apparently chaotic flow for φ = 0.7 and W = 40ro

is visualized for three different initial perturbations in figure C.16. We see that the ε̂~vη initial

condition has a different development from the eigenvector ε̂~sα or ad hoc ε̂δyc disturbances.

Its L-scale wave-like structure persists and amplifies before it breaks down into an apparently

chaotic flow. The other initial perturbations lead to choppier variations in the capsule train,

with shorter features in the streamwise direction. In these cases, the capsule columns seem

to first come apart at specific points, before they develop an apparently chaotic behavior,

much more slowly than the ~vη case.

The relatively narrow W = 10ro with φ = 0.2 (figure C.2 a), shows a qualitatively similar

amplification for the same three types of initial conditions (figure C.17), though all of the

growth rates are substantially faster, as anticipated based on figures C.6 and C.9. In this

case, nonlinear saturation is accelerated only by a factor of 100 for the ε̂ = 0.01ro initial

disturbance ε̂~vη relative to ε̂~sα. The weaker 0.001ro~vη perturbation also appears to reach

an amplitude consistent with the onset of nonlinear effects within the simulation time shown.

107
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(b) Transient disturbances ~x+ 3.5~vη

(c) Asymptotic disturbance ~x+ 3.5~sα
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Figure C.13: (a) The baseline configuration for an empirically stable case with W = 4ro, φ = 0.5
and N = 7. (b) The t→ 0+ most amplified transient, and (c) the asymptotically most amplified
disturbances. (d–e) The corresponding disturbance metrics (C.22) through (C.26). The exaggerated
displacements cause these to look unphysical, as discussed in section C.4.1 in regard to figure C.7.
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Figure C.14: Disturbance amplification for the empirically stable narrow channel case, visualized in
figure C.13 (a). The DNS track (curves C and D) the corresponding linear amplifications (curves A
and B) only for short times.
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(G) 0.01roδyc i.c., DNS

Figure C.15: Disturbance amplitude evolution for the wide–dense configuration (W = 40ro and
φ = 0.7) with ε̂ = 0.001ro and 0.01ro for initial conditions and predictions as labeled. The
∆t ≈ 103T /roµ labels the approximate difference in time for onset of nonlinear for transient versus
eigenvalue estimates for ε̂ = 0.01ro (see text).
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ε̂~vη ε̂~sα ε̂δyc

t∗ = 0, exaggerated aε̂ t∗ = 0, exaggerated aε̂ t∗ = 0, exaggerated aε̂

t∗ = 0.050 t∗ = 85 t∗ = 7850

t∗ = 0.055 t∗ = 90 t∗ = 8225

t∗ = 0.060 t∗ = 98 t∗ = 8900

t∗ = 0.065 t∗ = 108 t∗ = 9400

t∗ = 0.400 t∗ = 170 t∗ = 10000

Figure C.16: Transition to disordered flow for the ε̂ = 10−2ro cases of figure C.15. For plotting the
initial configuration, the exaggeration factor is aε̂ = 3.5. The walls are not shown; they can be
seen for the baseline configuration in figure C.2 (d). The times shown t∗ = tT /roµ were selected to
illustrate the development qualitatively.
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Figure C.17: Disturbance amplitude evolution for the narrow–sparse configuration (W = 10ro and
φ = 0.2) with ε̂ = 0.001ro and 0.01ro as labeled. The ∆t ≈ 102T /roµ labels the approximate
difference in time for onset of nonlinear for transient versus eigenvalue estimates for ε̂ = 0.01 (see
text).

The upper-bound exp ζ(t)t curve is again consistent with this accelerated saturation.

Unlike the nonlinear breakdown for the densely packed wider channel of figure C.16,

figure C.18 shows that the three initial conditions in this narrower case have qualitatively

similar progression to a relatively disorganized state. The capsules retain an approximately

single-file structure but with the capsules oriented at a range of angles with significant changes

of streamwise spacing, as has been observed in similar configurations in both two [420] and

three [406] dimensions. Unlike the W = 40ro, φ = 0.7 case, this configuration does not,

at least for the times simulated, show significant overturning or passing of the capsules,

presumably because of some combination of the greater confinement for W = 10ro and less

crowding for φ = 0.2.

C.4.6 Elastic stiffness

As discussed in section C.3.1, the displacement-based measure used to quantify amplification

does not have a one-to-one correspondence with a mechanical energy, with the consequence
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Figure C.18: Transition to disordered flow for the ε̂ = 0.01ro cases of figure C.17. For plotting the
initial configuration, the exaggeration factor is aε̂ = 3.5. The walls are are not shown; they can be
seen for the baseline configuration in figure C.2 (a). The times shown t∗ = tT /roµ were selected to
demonstrate nonlinear disruption.
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Figure C.19: Effect of capsule stiffness on α and η.

that different perturbations for the same ‖~ε‖ can have different strain energies. We consider

this here, and more generally the effect of capsule stiffness, by changing Ca. We consider

capsules with up to Ca = 117, starting from the Ca = 15.2 introduced as the basic case

in section C.1, which increases flexibility by decreasing M by a factor of about 7.7. The

tension modulus is adjusted correspondingly per (C.5).

The consequence of these changes on the initial transient and asymptotic amplification

rates is relatively small over this range, as seen in figure C.19. The asymptotic growth rates

are nearly unchanged; only the wide–dense (W = 40ro, φ = 0.7) case shows a decrease at

small M. The transient amplification is more sensitive, as might be expected given that

these disturbances generally showed more distortion of the capsule shapes. Still, they only

decrease by less than a factor 10, with similar effects on the eventual breakdown. Though

we do not simulate smaller or larger Ca because it is computationally more challenging and

less relevant to the capsule regimes of interest, we can anticipate that significantly stiffer or

more flexible capsules will necessarily respond differently.

The ζ(t) amplification, shown for the wide and dense case (W = 40ro, φ = 0.7) in

figure C.20, is altered by the capsule stiffness, but not fundamentally changed. The delays

observed for larger Ca reflect changes in the strain energy of the corresponding disturbances.

To quantify this, we define strain energy

ψ =
T
2

∫

all C

(
ds

dso
− 1

)2

dl +
M
2

∫

all C

κ2 dl, (C.27)

and following (C.8) we define a perturbation value ψ′(t) ≡ ψ(t)− ψb. Figure C.20 (b) shows

that for stiffer capsules (smaller Ca), the energy of the most transiently amplified initial

disturbance for that time, which we designate ~vζ(t), is nearly constant. However, at a later

time, it drops to a value near that of ~sα. For increasingly flexible capsules, this switch

occurs increasingly close to the time when asymptotic amplification is predicted to become

significant. In all cases it is clear that the transient disturbances carry significantly more
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strain energy than the asymptotic ones, indicating that mechanical coupling within the

capsules is a key factor only in transient amplification.

C.5 Summary and conclusions

The primary conclusion is that both asymptotic and transient linear amplification of small

disturbances can upset single-file trains of flexible capsules when they are not tightly confined.

This was confirmed by direct comparison with corresponding nonlinear simulations. Analysis

of their growth rates anticipates that transiently amplifying finite, though still small (e.g.

ε̂ = 0.01ro), disturbances can significantly accelerate transition to an apparently chaotic flow.

Both transiently and asymptotically most amplified disturbances reach this condition well

before the ad hoc random disturbances considered, which implies that some sort of stability

analysis is necessary to predict transition times in, say, a noisy environment. Interestingly,

despite empirical observations of apparently indefinite persistence, capsule trains in a highly-

confining very narrow channel were also found to be linearly unstable. However, in this case

nonlinear effects become active at relatively small displacement amplitudes and preserve the

regular train formation.

An implication for the design of devices that process flexible capsules is that channel

geometry and packing fraction both significantly affect the most amplifying disturbances.

Qualitatively different most-amplifying disturbances were found to grow at very different

rates in different cases. Since the very narrowest channels provide the most obviously

persistent capsule trains, it was particularly unexpected that the relatively narrow W = 10ro

channel was significantly more amplifying than the corresponding wider W = 40ro channel.

Yet, despite this amplification, for small packing fractions (φ = 0.2) nonlinear effects did not

lead to a chaotic seeming flow in the times simulated. Perturbations grew rapidly, but only

developed into an irregular single-file arrangement, not the more complicated overturning

and passing seen for the more dense configurations.

There are three simplifications in the model configuration studied that warrant additional

discussion. The most obvious concerns how well these observations reflect three-dimensional

capsule flow. While the two-dimensional model reproduces the same basic phenomenology of

three-dimensional systems, and has the advantage of requiring little computational effort to

explore large ranges of parameters, it is not expected to provide a quantitative model of real

systems. Numerical tools to do this are available [70], though subsequent analyses will likely

be restricted to a narrower range of parameters. The present study likewise neglects inertia.

Though this is undoubtedly a reasonable approximation for many phenomena at these

conditions, Reynolds numbers might not always be so small as to preclude the accumulation

of nonlinear effects at longer times. However, given the reliance of the present analysis on

the boundary integral description of the flow, including inertia in detail would necessitate a

substantial redesign of the numerical approach. The third simplification is the matching of

the interior capsule viscosity to that of the suspending fluid. It is understood that larger

interior viscosities, such as in blood cells, can make them more prone to tumbling, which

becomes effectively solid-body motion in the inifinite-interior-viscosity limit. We have not

investigated this for simplicity, though there is no expectation of any fundamental changes
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Figure C.20: The W = 40ro, φ = 0.7 case: (a) The predicted disturbance amplitude for different
membrane stiffnesses based on: · · · · · · η, — ζ(t), and – – α; and (b) the relative strain energy of
the transiently most amplified mode ~vζ(t) at time t —. For reference, also shown in (b) are the
energy of the corresponding to · · · · · · ~vη and – – ~sα. Note, neither plot displays the evolution of
the system in time. Rather, they show the maximum possible linear amplification amplitude and
corresponding strain energy for an ε̂ = 0.001ro disturbance at that time. The strain energy can
change abruptly as different disturbances become the nominally most dangerous at specific times.
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for modest variations of interior viscosity.

Finally, it is unfortunate that the neglect of inertia (and kinetic energy), which makes

flow in the viscous limit relatively tractable analytically, precludes a convenient and unique

mechanical energy instability metric, such as that available for higher-Reynolds-number

incompressible flows. As such, some most-amplifying disturbances have seemingly negligible

strain energy, whereas others have significantly more. However, the basic behavior of the

instabilities are insensitive to the stiffness of the capsules, so the qualitative response is

unchanged by the initial strain energy. The transient amplification is increased for stiffer

capsules, as expected, and the switch-over to the long-time asymptotic behavior is likewise

accelerated, but qualitatively unchanged. The long-time asymptotic stability is relatively

insensitive to capsule stiffness for the range considered, presumably because it hinges mostly

on the linear flow and the capsule–capsule interaction mechanics it mediates. There is an

abrupt switch between the short-time behavior, for which the most dangerous perturbations

carry relatively large strain energy, and the asymptotically most unstable modes, which do

not.
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D Continuum-based methods for
cell-train behavior

An example of a reduced model approach for computing cell train stability is considered

here. A continuous rheological flow system, based upon a core-annular flow configuration,

with core and annular regions representing the cell-train and suspending fluid, respectively,

is proposed. It is hypothesized that a more complex though continuous rheological fluid may

properly model the stability behavior of the cell-rich core region found in the cell-train flows

of chapter 4 and appendix C, especially when the distance between the capsules or cells

is small. Since the full discrete capsule simulations of appendix C display most amplified

disturbances that are long-wavelength in character, it is possible this connection exists. This

is similar to that expected due to a surface-tension-like mechanism between the capsule-rich

core and capsule-free outer flow. Further, the amplification rates of small disturbances of the

discrete capsule-train scale according to a power-law, which suggests a continuous dispersion

relation might be appropriate.

D.1 Model system

The majority of the progress made has been on a simplified problem: a three-dimensional

incompressible cylindrical Newtonian jet flowing with uniform velocity surrounded by a fluid

of zero density, as visualized in figure D.1. For completeness, this problem leaves both the

inertial and viscous terms in the Navier–Stokes equations, though it is known that Re is

very small for cellular flows. However, both the viscous and inviscid limits of this problem

are considered for comparison with previous results.

r = ζ

r = a

r

x

µ, ρ

Ambient, ρ = 0

U → 0

Figure D.1: Schematic of the model system: A cylindrical Newtonian jet issuing into quiescent fluid
of zero density. As usual, the azimuthal direction θ is a rotation about the x-axis.
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The governing equations appropriate for this system, the homogeneous Navier–Stokes

equations for an incompressible fluid in a cylindrical coordinate system are,

∇ · u = 0, (D.1)

ρ
Du

Dt
= −∇p+ µ∇2u, (D.2)

where ρ is the jet fluid density, u is the velocity field, p is the pressure field and µ is the

viscosity.

The radial distance from the center of the jet to the fluid interface is ζ and the initial

unperturbed jet radius is a, as shown in figure D.1. The outward unit normal and tangent

vector to the fluid interface are n and t respectively. The surface equation is F ≡ r − ζ = 0

and so n = ∇F/‖∇F‖. Thus, the normal and tangent vectors are

n =

[
−∂ζ
∂x
, 1,− ∂ζ

r∂θ

](
∂ζ

∂x

2

+ 1 +
∂ζ

r ∂θ

2)−0.5

, (D.3)

t =

[
1,
∂ζ

∂x
,−1

r

∂ζ

∂θ

](
∂ζ

∂x

2

+ 1 +
∂ζ

∂θ

2)−0.5

(D.4)

where t is calculated such that n · t = 0.

The appropriate boundary conditions for the jet are kinematic and matching stress at the

interface as well as regularity conditions at r = 0. The stress matching condition including

uniform surface tension is

Jn · T K = γ n(∇ · n) at r = ζ, (D.5)

where JqK ≡ q2 − q1 is the jump operator and Tij = −pIij + µ(∂iuj + ∂jui) is the total stress

tensor.

The kinematic condition states that a particle on the interface must stay on the interface,

ur =
Dζ

Dt
at r = ζ, (D.6)

which, along with the regularity conditions conclude the boundary conditions.

D.2 Linear stability analysis

The formal linear stability analysis proceeds as follows. The interface, velocity and pressure

fields are decomposed into a base state and presumed small deviations from it, denoted here

by primes:

ζ = a+ ζ ′,

p = P + p′, (D.7)

u = U + u′.
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The uniform base flow U can be set to zero by Galilean invariance. Substituting (D.7) into

(D.2) and linearizing by removing terms which are super-linear in the perturbations we have,

∇ · u′ = 0 (D.8)

ρ
∂u′

∂t
= −∇p′ + µ∇2u′. (D.9)

By conducting an axisymmetric normal mode analysis, the temporal and spatial contri-

butions are decomposed. This is the only known unstable case and is constructed as,

u′ = û(r) eikx+st,

p′ = p̂(r) eikx+st, (D.10)

ζ ′ = ζ̂ eikx+st,

where k is the streamwise wave number and s is the complex growth rate. Substituting

(D.10)) into (D.9) gives,

Continuity: 0 =
1

r
ûr + drûr + ik ûx (D.11)

x-dir: ρsûx =− ik p̂+ µ

(
d2
rûx +

1

r
drûx − k2ûx

)
(D.12)

r-dir: ρsûr =− drp̂+ µ

(
1

r
drûr + d2

rûr −
(

1

r2
+ k2

)
ûr

)
(D.13)

Following the same procedure for boundary conditions, (D.5) becomes

s (2µdrûr − p̂) = γ

(
1

a2
− k2

)
ûr at r = a, (D.14)

drûx + ikûr = 0 at r = a, (D.15)

in the normal and tangential directions, respectively. The kinematic boundary condition is

ûr = sζ̂ (D.16)

The coordinate singularity conditions conclude the boundary conditions, which, for an

axisymmetric jet are

drûx = drp̂ = ûθ = ûr = 0 at r = 0. (D.17)

Notice that (D.11-D.13) and their respective boundary conditions are a complex general-

ized eigenvalue problem of the form Ax = sBx, where A and B are matrices associated

with the governing equations and x is the vector of eigenfunctions. Solving this eigenvalue

problem is nontrivial and requires numerical methods. Specifically Chebyshev polynomials

are used to form a pseudospectral collocation method as has been used previous for this

type of problem [421], which are discussed in the next section.
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D.3 Chebyshev methods

The Chebyshev polynomial basis functions are useful for computing derivatives with spectral

accuracy. The Chebyshev differential equation is given by

d

dx

(√
1− x2

dTn
dx

)
+ λn

1√
1− x2

Tn = 0, (D.18)

and the solutions Tn to (D.18) are called Chebyshev polynomials, which are orthonormal

with respect to weight function 1√
1−x2

. The eigenvalue that correspond to each polynomial

Tn is λn.

An arbitrary function can be interpreted in terms of a series of Chebyshev polynomials,

uj =
M∑

n=0

anTn(xj), (D.19)

where an are the Chebyshev coefficients and M is the maximum polynomial degree. Here, u

will be evaluated at a discrete set of xj points, which can be interpreted as a matrix multi-

plication u = T a that translates between Chebyshev and physical space. The Chebyshev

coefficients are determined from orthogonality relations that apply to them and are not

detailed here,

an =
2

cnM

M∑

j=0

1

cj
ujTn(xj) n = 0, 1, ...M where cj =





2 p = 0,M

1 otherwise
(D.20)

D.3.1 Differentiation

The differentiation of a function u can be derived using the recursion properties of Chebyshev

polynomials,

u′j(x) =
M−1∑

n=0

bnTn(xj), (D.21)

M−1∑

n=0

bnTn =

M∑

n=0

anT
′
n (D.22)

where primes denote the full derivative with respect to x. The relation between coefficients

b and a is,

Gpn =





0 if p ≥ n or p+ n even

3n/cp otherwise
where b = Ga. (D.23)

Higher derivatives can be described by matrix multiplying G with itself that many times

to obtain the necessary coefficients. Instead of evaluating the derivatives in terms of its

Chebyshev coefficients, I explicitly evaluate it on a physical grid to create a derivative
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operator in that space,

D = TGT−1. (D.24)

So derivatives can simply be evaluated as,

u′ = Du, u′′ = D2u, etc.

we are a discrete representation of the derivative operator and can be applied to eigenvalue

problems.

D.3.2 A representative example: Orr-Sommerfeld equation

A brief verification of the spectral convergence of the Chebyshev method is presented for

a typical hydrodynamic stability problem. That is, the eigenvalue problem given by the

Orr-Sommerfeld equation:

(U − c)
(

d2φ

dy2
− k2φ

)
− φd2U

dy2
=

1

ikRe

(
d2

dy2
− k2

)2

φ, (D.25)

where U is a prescribed base flow, c is the eigenvalue and φ are the eigenfunctions; note

that the normal mode expansion exp ik(x− ct) is used here and imaginary c contributes

exponential growth or decay. A Poiseuille base flow U = 1 − y2, y ∈ [−1, 1] is considered

here for comparison with established results. The boundary conditions to (D.25) are no-slip

and no-penetration,

φ =
dφ

dy
= 0 at y = ±1. (D.26)

The generalized eigenvalue problem (D.25) is discretized using the Chebyshev method and

has the form Aφ = cBφ; the eigenvalues and eigenvectors are computed using standard

LAPACK routines.

Figure D.2 (a) shows the error ε of the most amplified eigenvalue of (D.25) for specific

parameters and varying M . In this case the numerical approximation is compared to

established results computed using specialty methods for this specific problem. The error

decreases exponentially with M as expected, then increases modestly once M is sufficiently

large. This is also expected, and as illustrated in figure D.2 (b) the condition number κ of

A becomes very large for large M , increasing as κ ∼ O(102p) where p = 4 is the order of

the highest order derivative in the problem, as expected according to theory. This naturally

prohibits the use of very large M as computations are constrained by the finite precision

arithmetic.

D.4 Results

The linear system of (D.11-D.13) is simplified to both the viscous (Re → 0) and inviscid

(Re → ∞) limits, with Re ≡ µUa/ρ, where analytical solutions are available due to
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Figure D.2: (a) Absolute error in the largest imaginary eigenvalue cI,1 of (D.25) with Re = 104,
k = 1 and (b) the associated condition number of A.

Rayleigh [422,423], then solved for s.

Results are shown in figure D.3. Our numerical approximation is within plotting precision

of the analytic solution for both Re = 0 andRe →∞. In the viscous case of figure D.3 (a),

the most amplifying wave number is k = 0, or infinitely long waves, and the solution is stable

for sufficiently short wavelengths of ka > 1. In the inviscid case of figure D.3 (b), the most

amplifying wavenumber is ka = 0.698 and the jet is neutrally stable for ka ≥ 1.

D.5 Discussion

The solutions detailed here for a purely viscous and inviscid capillary jet are in fact simplifi-

cations to the full problem that should be addressed moving forward, that is the one of a

core-annular flow of complex, though continuous, fluids. However, the problem considered

here does encompass many of the difficulties in the more complicated problem, such as the

linearization of nonlinear constitutive equations, utilization of spectral numerical methods

and application of boundary conditions.

Moving forward, the most straightforward expansion of the presented analysis would

be that of second-order fluids, particularly that of the core-flow. This model is explicit in

the velocity field, so the linear system of (D.9) would remain small. Further, the resulting

flow would be able to capture the viscoelastic effects and normal stress differences typical

of microcirculatory flow (see chapter 1). Unfortunately at this point there is no analytic

solution to the governing equations available, making verification of our methods more

challenging. More complex constitutive models should also be considered, such as those

that can capture shear-thinning behavior, a well-known property of blood flow [424, 425].

Candidate fluid models include those previously used as continuum approximations for whole

blood, such examples are Oldroyd-B, Carreau–Yasuda, Power-Law, Casson, and Herschel–

Bulkley [341,342,426–428]. Eluded to above, these constitutive models are not explicit in
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Figure D.3: Re[s] for both (a) Re = 0 and (b) Re →∞ at a range of k, where M = 20.

the fluid velocity, so the constitutive law must be included separately in the computations.

After such an analysis, the stability results could be compared to those predicted through

nonmodal analysis of the discrete cell-trains.
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E A rigid-sphere model for
capsule trains

Herein, a discrete rigid-sphere model is proposed as a reduced model for flowing capsules

or cells when the capsule-capsule spacing is sufficiently large. A linear stability analysis of

an example simple flow system is presented in section E.2. Extensions of this system in an

attempt to model the more complex flow of capsules, especially elastic effects, are discussed

in section E.3.

E.1 Rigid-sphere flow systems

Consider a rigid sphere of radius ai, suspended at position x with velocity U i in a fluid

with Newtonian viscosity µ and mean velocity U0. In a many-sphere suspension, the

hydrodynamic interactions of one sphere can be important for the flow of the others. Such

sphere-sphere hydrodynamic interactions can be determined through the so-called method

of reflections and Faxen’s law [346]. Following this analysis, the disturbance of the fluid

velocity from U0 by sphere i at the location of sphere j is

u0
i =

(
I

rij
+
xij xij
r3
ij

)
· 3aiU

0

4
+

(
I

3r3
ij

− xij xij
r5
ij

)
· 3a3

iU
0

4
, (E.1)

where xij ≡ xi − xj , rij ≡ |xij |, and I is the identity tensor. The resultant velocity due to

the first reflection of sphere j onto sphere i is,

U1
i =u0

j (rij) +
a2
i

2
∇2u0

j (rij) , (E.2)

=

(
I

rij
+
xij xij
r3
ij

)
· 3ajU

0

4
+O(r−3

ij ). (E.3)

So long as rij � ai, the cubic term in the separation can be neglected. Assuming this holds,

the total velocity of sphere i in the presence of a single other sphere j is,

U i =U0 +U1
i ,

=U0 +

(
I

rij
+
xij xij
r3
ij

)
· 3ajU

0

4
. (E.4)
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A general expression for the velocity of sphere i in the presence of a general number of

spheres is then

U i = U0 +
n∑

j=1
i6=j

1

rij
(I + eij eij) ·

3ajU
0

4
, (E.5)

where n is the number of spheres and eij ≡ xij/rij is the unit vector pointing from the

centers of sphere i to sphere j.

E.2 Flow and stability of uniformly spaced sphere

trains

i i+ 1 i+ 2i− 1i− 2

U0

d

ξi

Figure E.1: Flow schematic of a uniform one-dimensional sphere train. All spheres have radius a
and d is the consecutive sphere-sphere spacing.

Figure E.1 shows a one-dimensional uniform train of spheres flowing in an unbounded

periodic domain, which is considered as a reduced model for the analogous capsule-train.

We only consider streamwise positional perturbations to the sphere position, ξi, and so the

resulting flow is one dimensional. Using (E.5) the perturbation to the velocity of sphere i

due to all other spheres is,

Ui = U0 +
3aU0

2

∞∑

j=1

1

rij
. (E.6)

Since the hydrodynamic interactions decay as O(r−1), if d� a then we need only consider

nearest-neighbor sphere-sphere interactions. This gives,

Ui = U0 +
3aU0

2

(
1

r̃i,i+1
+

1

r̃i,i−1

)
, (E.7)

where r̃i,j = d+ (ξi − ξj). Following a standard practice, we decompose Ui into a uniform

base flow velocity and the velocity change due to nonzero ξi,

Ui =
∂xi
∂t

+
∂ξi
∂t
. (E.8)
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That is, ∂txi is the velocity were ξi = 0. Here, ∂txi is computed from (E.7) by setting ξi = 0

for all i,

∂xi
∂t

= U0 +
3aU0

d
. (E.9)

We compute Ui by first considering an expansion of r̃i,j about d,

1

r̃i,j
=

1

d
− ξi − ξj

d2
+O

(
(ξi − ξj)2

)
. (E.10)

Neglecting superlinear terms in ξi and substituting into (E.7),

Ui = U0 +
3aU0

d︸ ︷︷ ︸
=∂txi

−3aU0

2

(
ξi+1 − ξi

d2
+
ξi − ξi−1

d2

)
, (E.11)

which gives,

∂ξi
∂t

= Ui −
∂xi
∂t

,

= −3aU0

2

1

d2
(ξi+1 − ξi−1) , (E.12)

Following common procedure, the stability of this flow is determined through a normal mode

expansion of the form ξi ∝ eβteikxi , where β is the complex growth rate and k is the spatial

wave number. Substituting into (E.12) gives

β =− 3

2

aU0

d2
(eikd − e−ikd)

=− 3i
aU0

d2
sin(kd). (E.13)

Since Re[β] = 0 ∀ {k, d, U0}, the system is always stable. We confirm this result by

conducting a direct numerical simulation of xi(t) of a long sphere train using (E.6) and

verifying that small positional perturbations to xi do not grow or decay. Of course this

is only a simplified model problem and so a qualitative connection of its stability with a

capsule-train is not expected, and is indeed not found since the uniformed spaced sphere

system is always stable.

E.3 Extensions and discussion

ksU0

∆d

Figure E.2: Schematic of a more complex sphere flow system.
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Figure E.2 shows a more complex candidate flow system that may more accurately model

the stability of a capsule-train. Each “sphere-pair” is connected by a spring of modulus

ks and separated by distance d; consecutive sphere-pairs are separated by distance ∆. For

brevity the stability of this system is not shown here. We posit that the introduction of an

elastic element will more closely match the behavior of the still more complex capsule train.

Additionally, a viscous element, or dashpot, might be introduced to capture the intra-capsule

viscous effects due to the interior fluid.

Of course determining the stability of such complex sphere flow systems is not necessarily

trivial. This is especially true for scenarios where there are close sphere-sphere interactions,

and the approximations of the previous section no longer hold. A further complex system

might also consider the effect of parallel walls or flow within a cylinder, for which analytical

flow solutions exist [429]. Such analyses should also consider non-streamwise sphere distur-

bances, which are known to be important in capsule trains flowing in channels and tubes.

Finally, Faxén laws exist for particles of other shapes, such as ellipsoids [311, 429], which

might prove useful when considering non-spherical capsules in flow.
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F Discriminating chaotic
dynamics from stochastic noise
in microcirculatory flow
We lay out analyses of microcirculatory flow simulations, as conducted with the methods

of chapter 3. A synopsis of our results is in section 7.3.2; here, the data are details of the

results are presented.

F.1 Simulations

Simulations are initialized according to the description of section 4.1.1 for vessel diameters

D/ro = 6 and 8, and advanced 3 × 106 time steps. This corresponds to a streamwise

displacement of 8000 periodic vessel lengths according to the mean flow velocity, and

approximately four months of simulation run time. We confirm these simulations are

sufficiently long that the results of the following sections are statistically stationary.

F.2 Data

The radial location of a cell within the vessel is known to be an important quantity when

analyzing cellular blood flow. We define this metric using the radial coordinate of the

geometric centroid position of a cell, which is denoted by rj [t] for cell j.

In figure F.1 we show rj [t] for example cases with nested magnification up to the individual

time-step data. A transient behavior is seen for t . 300, with rj [t] increasing from near zero.

This is expected, as the small perturbations to the cells amplify due to the unstable nature

of the initialized flow system. For t & 300, rj [t] does not have any obvious pattern for either

case shown. We will use t > 300 for our statistics.

We define rj ≡ {rj [∆t], rj [2∆t], . . . , rj [n∆t]}, rj,i = rj [i∆t], and describe the discrete

and uniform time series with vector notation,

R = {r1, r2, . . . , rN} (F.1)

and Ri = {r1,i, r2,i, . . . , rN,i}.

F.3 Fourier spectrum

Fourier power spectra are often used to determine the dominant time scales, or frequencies,

of a nonlinear time series. A dominant frequency, or frequencies, serves as evidence of an
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Figure F.2: Fourier spectrum of rj for (a) D = 6ro and (b) D = 8ro, and j as labeled.

deterministic attractor. The discrete Fourier transform of rj is

F (rj)k =
1√
n

n∑

i=1

rj,i exp[2πi(i− 1)(k − 1)/n] for k = 1, n/2, (F.2)

for mode k.

In figure F.2 we show the Fourier power spectra of rj for select j and D. In all cases no

peak in F is seen, and thus there is no dominant frequency. For k & 100 for both D/ro = 6

and 8, and for all j, a power-law behavior in k appears with scaling −8/3. We expect this

power-law behavior is not due to the expected decay of the Fourier coefficients due to the

smoothness of the data, as the power is not near an integer and the behavior is independent

of filtering or smoothing of the data.
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F.4 Correlation dimension

The correlation dimension is obtained from correlations between points on an attractor, that

is, those extracted by our time series R. Due to the divergence of trajectories, most pairs

(Ri,Rj), with i 6= j, will be uncorrelated pairs of nearly random points. The points which

lie however on the attractor, therefore, will be spatially correlated. This spatial correlation

is measured with the correlation integral C(l), or the mean probability that states at two

different times are within threshold distance l,

C(ε) =
1

n2

n∑

i,j=1
i6=j

Θ(ε− ‖R̃i − R̃j‖), (F.3)

where Θ is the Heaviside step function, ‖·‖ is the L2 norm, and

R̃ =
{
Ri,Ri+τ , . . . ,Ri+τ(m−1)

}
, (F.4)

is the time-delay embedding of R with dimension m and time delay τ .

If for small ε, C(ε) can be expressed as

C(ε) ∼ εv, (F.5)

then v is called the correlation dimension and can be taken as a useful measure of the local

structure of an attractor. If v < m, then the signal likely stems from deterministic chaos

rather than a stochastic behavior. Here, v(ε) is simply the log derivative of C(ε).

The correlation integral and dimension for R are shown in Figure F.3 for an example

case. For ε . 4 × 10−3 we have C(ε) ∼ εm, which suggests ε sufficiently small to be in a

noise regime where (F.3) is poorly conditioned. We see v(ε) ≈ 1 for 4 × 10−3 . ε . 0.03

and m > 3, which suggests that the embedded data are too close to accurately determine

C(ε). We label 0.03 < ε < 1 the scaling region, where a power law behavior in ε is expected.

In this regime, v < m, though v still increases with m.

The slow increase of v with m in the scaling region of figure F.3 suggests v could be

converging upon a fixed value for large m. We quantify this behavior in figure F.4 though

the maximum value of v in the scaling regime for a range of m. We have maxε v = m for

m < 3, and approximately maxε v(ε) ∼ m0.3 for m > 4. The algebraic increase of maxε v(ε)

with m for at least up to m = 50 suggests it will not saturate at a fixed value for still larger

embedding dimensions. Again, this result suggests a stochastic behavior.

F.5 Structure function

The structure function is given by

Sk(n) =
N−n∑

i=1

‖dmt r1,i+n − dmt r1,i‖k, (F.6)
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where k is the norm, N is the number of time steps, and m is the degree of time derivatives

taken. For a chaotic system we expect Sk(n) ∼ nk for small n for both k = 1 and k = 2,

and any m [355]

In figure F.5 we see that Sk(n) ∼ nk for both k = 1 and 2, though this does not hold

when taking time derivatives of the data (m). As a result, we anticipate the data behavior

is stochastic.

F.6 Lyapunov exponents

Lyapunov exponents give the rate of divergence of nearby trajectories, in our case described

by R, the maximum of which is given by:

L(rj) =
1

n

n∑

i=1

ln

∣∣∣∣
∆rj,i+1

∆rj,i

∣∣∣∣ . (F.7)

When L > 0, the system is chaotic.

For both D/ro = 6 and 8 we have L1 > 5. However, this value is so large than its

considered unrealistic for a true chaotic system [355].
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