
Rheol Acta (2016) 55:451–464
DOI 10.1007/s00397-015-0900-9

ORIGINAL CONTRIBUTION

Buckling and its effect on the confined flow of a model
capsule suspension

Spencer H. Bryngelson1 · Jonathan B. Freund1,2

Received: 30 May 2015 / Revised: 12 November 2015 / Accepted: 13 December 2015 / Published online: 5 January 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract The rheology of confined flowing suspensions,
such as blood, depends upon the dynamics of the compo-
nents, which can be particularly rich when they are elastic
capsules. Using boundary integral methods, we simulate
a two-dimensional model channel through which flows a
dense suspension of fluid-filled capsules. A parameter of
principal interest is the equilibrium membrane perimeter,
parameterized by ξo, which ranges from round capsules with
ξo = 1.0 to ξo = 3.0 capsules with a dog-bone-like equilib-
rium shape. It is shown that the minimum effective viscosity
occurs for ξo ≈ 1.6, which forms a biconcave equilibrium
shape, similar to a red blood cell. The rheological behavior
changes significantly over this range; transitions are linked to
specific changes in the capsule dynamics.Most noteworthy is an
abrupt change in behavior for ξo ≈ 2.0, which correlates with
the onset of capsule buckling. The buckled capsules have
a more varied orientation and make significant rotational
(rotlet) contributions to the capsule–capsule interactions .
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Introduction

Rheology of suspensions depends upon the mechanics of
the suspended elements, which can be particularly com-
plex for elastic capsules, especially when flowing in nar-
row confines. In such cases, the membrane deformations
can be strongly coupled with the overall flow dynamics
(Zhou and Pozrikidis 1995; Ghigliotti et al. 2010; Lei et al.
2013; Freund 2014) making it difficult to analyze. We con-
sider a simple model suspension of such capsules, each an
incompressible liquid filled elastic membrane. These can
be considered models of natural capsules, such as vesi-
cles, biological cells, or viruses, or artificial capsules such
as those used for targeted drug delivery or time releas-
ing aromas or flavors (Clausen et al. 2011; Gibbs et al.
1999; Dey et al. 2008; Pop 2011; Paret et al. 2015). Natural
capsules are typically formed by a lipid bi-layer mem-
brane, which is buttressed in many cases with additional
molecular components such as proteins. Common artifi-
cial membranes are manufactured using polymers such as
alginate, poly-L-lysine, or polyacrylates (Ulbricht 2006).
While these molecular details are important for the dynam-
ics of any particular capsule system, we focus our study
specifically on the finite-deformation dynamics of highly
deformable membranes and do not further consider their
molecular make-up.

Blood is a particularly important suspension of this
type, and though we only consider a two-dimensional
model configuration, it does reproduce an important phe-
nomenology, quantitatively in cases; potential implications
for the flow of blood cells in tight confines are discussed
throughout. The baseline configuration we consider dis-
plays a biconcave equilibrium shape similar to a red blood
cell (Jenkins 1977; Shiga et al. 1990; Smith et al. 1980;
Canham 1970). We also consider capsules with increased

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s00397-015-0900-9-x&domain=pdf
mailto:jbfreund@illinois.edu
mailto:bryngel2@illinois.edu


452 Rheol Acta (2016) 55:451–464

and decreased relative surface area, which corresponds
to certain pathological conditions in blood. Both surface
area and volume are approximately constant for healthy
red blood cells, but some disease conditions cause relative
volume to disproportionately increase forming spherocytes
(e.g., Da Costa et al. 2013) or decrease forming sickle-
shaped cells (e.g., Anderson et al. 1963; Li et al. 2013).
Similarly, shape and mechanical properties are potentially
important design parameters for artificial capsules to be sus-
pended in blood or used otherwise (Peyratout and Dahne
2004; Raghunathan et al. 1981; Wang et al. 2008; Fedosov
et al. 2014), and the development of artificial blood remains
a long-term goal (Chang 2010). In our study, we consider
a range of equilibrium shapes, loosely based upon those
observed physiologically and potential variations, which
lead to phenomenological changes in the capsule dynamics
and thus the confined-suspension rheology.

The rheological behavior of such a suspension flowing
in a narrow channel is most obviously manifested in its
effective viscosity, as would be deduced based on pres-
sure drop were it a homogeneous Newtonian fluid. For
blood, complex scale-dependent behavior of effective vis-
cosity has been observed for a long time (Martini et al.
1930; Fahraeus and Lindqvist 1931), the root mechanism
of which seems to be the formation of a cell-free layer at
adjacent walls. The formation of a cell-free layer decreases
flow resistance and is thought to be an important factor in
microcirculatory dynamics (Pries et al. 1992). The thick-
ness of this cell-free layer has been shown to decrease
with increasing hematocrit, increase with increasing flow
rate, and decrease with increasing cell membrane stiff-
ness (Bugliarello and Sevilla 1970; Cokelet 1972; Sharan
and Popel 2001; Srivastava 2007; Sankar and Lee 2008).
We show a fundamental change in this layer for increas-
ing membrane surface area: the overall viscous resistance
increases abruptly with a concomitant disappearance of
any significant capsule-free layer. The implications of this
potentially extend beyond the overall rheology since the
properties of red blood cells are also known to mediate
the margination process of leukocytes and platelets (Skalak
et al. 1989; Firrell and Lipowsky 1989; Zhao and Shaqfeh
2011; Kumar et al. 2014; Henriquez Rivera et al. 2015),
which are important for inflammation and thrombosis.

Our goal is to quantify the effective viscosity, which
potentially depends upon the capsule’s reduced volume,
and understand how this rheological behavior relates to the
dynamics of the suspended elastic capsules. In particular,
we investigate changes that occur as capsule equilibrium
shapes are varied from relatively circular to very elongated,
and how the microstructural dynamics of these capsules are
manifested in the macroscopic suspension dynamics. This
is done with a detailed, though two-dimensional, flow con-
figuration, which serves as model for blood and its flow,

either in the microcirculation or in a microfluidic device.
While this two-dimensional model will not necessarily be
quantitatively precise for blood, or indeed any genuinely
three-dimensional suspension, such a model has been used
extensively to study capsule dynamics in homogeneous
shear (Zhou and Pozrikidis 1995; Rahimian et al. 2010)
and to reproduce key phenomena of the microcirculation
(Freund 2007; Isfahani 2008). Its advantage is that it
facilitates simulation of many cases and more extensive
averaging to collect important flow statistics, which is help-
ful for discovering and mapping flow mechanisms and
regimes.

The specific flow configuration studied is introduced in
the “Model capsule flow system” section, and the spec-
tral boundary integral method used to solve the fully-
coupled fluid-structure capsule dynamics is outlined in the
“Numerical methods” section. The results are discussed
in the “Results” section, which includes the rheologi-
cal changes in the suspension effective viscosity and the
microstructural changes of the suspended capsules. This
section also includes auxiliary simulations to quantify a cap-
sule buckling behavior that is linked to the overall suspen-
sion dynamics and is reflected in a rapid increase in the role
of capsule rotation in the overall dynamics, as quantified
by a multipole expansion analysis. The section summarizes
the principal conclusions and provides additional discussion
regarding their implications.

Model capsule flow system

We consider a streamwise periodic channel as a model for
fully developed flow in a long section of a microvessel
or microfluidic device as shown in Fig. 1. The mean flow
velocity is U , the channel width is W , its periodic length
is L, and in it are N suspended capsules, each of area
A = πr2o . For all quantitative results, L = 40ro, which is
sufficiently large that the reported results are insensitive to
it. This was confirmed by doubling L and N for selected
cases and confirming that effective viscosity statistics were
unchanged. Channel widths vary from W = 14ro to 40ro.
The area-fraction of the channel occupied by the capsules, a
nominal hematocrit was this blood, is

Hc = Nπr2o

WL
, (1)

which is varied Hc = 0.01 to 0.4, covering a wide range
from dilute to approximately that of whole blood.

The capsules are encased by elastic membranes with lin-
ear finite-deformation tension and bending moduli, T and
M, respectively. This linearization is derived from the full
nonlinear Helfrich energy (Cantat and Misbah 1999) and
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Fig. 1 Schematic of the
two-dimensional
streamwise-periodic model
channel with capsules of area A

and perimeter lo

has been employed previously for thin elastic membranes
(Freund 2007; Pozrikidis 2001). We also verify by direct
comparisons that the key reported observables changed by
at most 4 % upon using the full nonlinear Helfrich energy.
In terms of an arc length coordinate s(so) and reference arc
length so, the membrane tension τ and bending moment b

are,

τ = T

(
ds

dso
− 1

)
and b = M(C − Co), (2)

where C is the curvature with reference curvature Co = 0.
With these, the net traction exerted by the cells on the fluid
is

�σ = ∂tτ
∂s

+ ∂

∂s

(
∂b

∂s
n

)
, (3)

where t is the membrane unit tangent and n is its outward
unit normal. Of particular interest is the membrane refer-
ence length lo relative to its minimum (that of a circle),
which is parameterized by ξo: lo = 2πξoro. As such, ξo is
the squared inverse of what might be considered a reduced
area,

Ar = 4π [area]

[perimeter]2
= 1

ξ2o
, (4)

though we will generally quote ξo because of its clear con-
nection with the capsule reference perimeter and therefore
the buckling criterion (see “Buckling”).

The fluid both inside and outside the capsules is
Newtonian with viscosity μ. Actual red blood cells are
thought to have an elevated interior viscosity (Bronzino
2000; Whitmore 1968), by about a factor of 5 (Distenfass
1968), though matched viscosity has been shown to pro-
duce qualitatively realistic blood flow phenomena in two
dimensions (Freund 2007) and quantitative accuracy for
many quantities in three dimensions (Freund and Orescanin
2011). Taking values appropriate for blood under physio-
logical conditions, the Reynolds number based upon the
mean flow U � 1 mm/s, mass density ρ = 103 kg/m3,
μ ≈ 3 × 10−3 Pa s, and W = 30 μm is Re ≈ 0.01,
which supports neglect of inertia in the governing equations.
We assume that any corresponding manufactured capsule

suspensions or microfluidic devices operate under simi-
larly low-Reynolds-number conditions. For convenience,
we form the parameters into a capillary number

u∗ ≡ μU

T
, (5)

which we vary from u∗ = 0.2 to 1 and can be interpreted as
a ratio of an advection time to a relaxation time. Similarly,
we define a relative stiffness parameter,

r2oT

M
= 50, (6)

which we hold fixed at this relatively large value as a model
for the near incompressibility of typical capsule membranes.

Numerical methods

The discretization is based upon a boundary integral repre-
sentation for the velocity ui in terms of the surface tractions
from Eq. 3 (Pozrikidis 1992; Kim and Karrila 1991):

ui(x) = Ui(x) + 1

4πμ

∫
�

Sij(y − x)�σj(y)ds(y), (7)

where U(x) = (U, 0, 0) is the mean velocity and � rep-
resents the membranes and vessel walls with outward unit
normal n. The kernel Sij of the integral in Eq. 7 is the
Green’s function of the Stokes equation (the so-named
Stokeslet),

Sij(x) = x̂ix̂j

r2
− δij ln r, (8)

evaluated at x for a singular unit-strength Stokeslet force at
x′, with x̂ ≡ x − x′ and r ≡ |x̂|.

Each membrane is discretized by Np points distributed
uniformly over its (periodic) reference arc length, parame-
terized by so. Derivatives and integrals on the membranes
are computed via an interpolating Fourier series (Freund
and Zhao 2010; Zhao et al. 2010). Though the Stokes flow
(7) and constitutive model (2) are linear, the geometric
factors (normals, tangents, and curvatures) introduce non-
linearity, which can lead to numerical instability via aliasing



454 Rheol Acta (2016) 55:451–464

(Zhao et al. 2010; Freund 2014). This is suppressed, with-
out compromising the fidelity of the solution supported by
the Nyquist limit of the Np collocation points, by evalu-
ating �σ(so) on Na > Np points and Fourier filtering
to Np points after nonlinear operations. In all simulations
Na = 4Np. We confirm that reported results are insensitive
to the selected resolution Np.

To avoid both the complexity of a series of Green’s func-
tions to represent the walls (Weinbaum and Ganatos 1990;
Staben et al. 2003) and the solution of a single-layer for-
mulation, we enforce the no slip condition using a penalty
method in which the wall is constructed from elements that
are permitted to displace a small amount. Each of the 750
independent �sw-wide elements of each wall is anchored
to its reference location xw by a Hookean spring, so its
imposed traction is

�σw = −Sw(x − xw). (9)

The spring constant Sw = 1.7T/r2o can be relatively large
without restricting the stability limit of the time integrator
as set by the capsule membrane dynamics.

Consistent with the neglect of inertia in the flow equa-
tions the capsule membranes and vessel walls are assumed
to be massless, so given the velocity u(x) from Eq. 7, the
membrane position is governed simply by

dx
dt

= u(x), (10)

which is applied to each collocation point of the discrete
representation. This system (10) is integrated in time using a
second-order Runge–Kutta scheme with a time step of�t =
0.01μro/T .

It is well understood that the lubrication layers that form
upon close approach between such capsules would math-
ematically prohibit contact in finite time for finite forces.
However, even in our idealized physical model, numerical
errors can lead to overlap between the capsules, which we
avoid with a short-range repulsion between nearby capsules.
Though this can be a considered as a model for repulsive
lubrication forces, physiologic capsules are expected to have
more complex interactions, so it is unclear that even a pre-
cise lubrication formulation would be appropriate. Steric
and electrostatic repulsions are thought to mediate contact
between red blood cells at very small length scales (Jan
and Chien 1973). For realistic simulation of blood cells in
three dimensions, boundary integrals have been used to sim-
ulate lubrication down to the scale of proteins (Freund and
Orescanin 2011), but further resolution is unlikely to pro-
vide a more realistic physical description because it would
not represent in detail the actual contact and near-contact

interactions. In our formulation, the repulsion force at a
point x on a membrane due to another (x′) is

f (x) =
{

Sf
eδ−r−1
eδ−1

x−x′
r

for r ≤ δ

0 otherwise
, (11)

where r = |x − x′|, δ = 0.2ro, and Sf = 2.5T . The deriva-
tive of f with respect to s is added to the traction (3) in the
integrand of Eq. 7. Similarly, the area of the capsules is only
enforced by the fidelity of the numerical schemes. Although
this is very accurate because it is a low-order moment of the
capsule shape and thus well resolved, still a weak variational
correction is applied to preserve constant area indefinitely
as has been used previously (Freund 2007).

Our implementation has been extensively verified against
analytical results for Poiseuille flow in a wavy-walled chan-
nel (Isfahani 2008) and more recently for the drag on an
infinite periodic lattice of circles in cross-flow (Hasimoto
1959). In this latter case, results are within 1 % error for
50 collocation points and 0.4 % error for 100 collocation
points per circle. We also confirmed that the effective vis-
cosity we report changed by less that 1 % upon changing
the wall strength from Sw = 1.7T/r2o to 3.4T/r2o , repulsion
from Sf = 2.5T to 5T , and both doubling and halving the
repulsion length scale δ.

Results

Equilibrium shapes

We start by visualizing the equilibrium shapes for differ-
ent ξo in Fig. 2, which display expected variations (Knoche
and Kierfeld 2011; Brezavscek et al. 2012; Jenkins 1977).

Fig. 2 Example equilibrium shapes for different ξo
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Taking ξo = 1.0 yields a circle, which is only ever slightly
distorted by flow for our conditions, and small increases
in ξo lead to a mildly prolate convex geometry. Increas-
ing elongated prolate shapes for larger ξo transition to a
biconcave configuration near ξo ≈ 1.4, nominally match-
ing a healthy red blood cell when ξo ≈ 1.6. Increasing ξo
further leads to additional inflection points for ξo � 2.1
and produces dog-bone-like shapes with increasingly large
aspect ratios. Note that the repulsion force f between suffi-
ciently close collocation points, according to (11), prevents
the membrane from self-intersecting for large ξo, as it would
otherwise.

While ξo ≈ 1.6 corresponds most closely to a healthy red
blood cell, the near-circular capsule geometry (ξo ≈ 1.0)
is characteristic of spherocytes, the defining symptom of
sphereocytosis, a hereditary disorder that mutates the genes
encoding red cell membrane proteins, causing a loss of
membrane (Shiga et al. 1990; Chabanel et al. 1987). Addi-
tionally, many artificial capsules are manufactured to have a
similar spherical shape (Dey et al. 2008; Majeti and Kumar
2000; Peyratout and Dahne 2004; Raghunathan et al. 1981;
Wang et al. 2008). With increasing ξo, the capsules become
elliptical and prolate. These geometries are similar to those
of elliptocytes, which are found in those diagnosed with
elliptocytosis, caused by similar mutations as spherocyto-
sis, but arise via lateral interactions of the cytoskeleton
(Shiga et al. 1990; Chabanel et al. 1987). For larger ξo �
2.0, corresponding configurations for red blood cells have
been observed in severe cases of anemia and sickle cell

anemia (Emmel 1917; d’Onofrio and Zini 2014). Manufac-
tured capsules of this geometry have also been proposed
for a variety of applications, such as coatings, aerosols, and
drug delivery (Calle et al. 2012; Donbrow 1991) with differ-
ent conformations. The behavior of these different capsules
in flow is considered next.

Flow visualizations

Figure 3 shows flowing capsules for different ξo at the
smallest and largest capillary numbers. In the ξo = 1.0 cir-
cular limit (Fig. 3a, b), capsules are only slightly deformed
from circular shapes, though more so for the faster flow and
nearer to the vessel walls where the shear stress is larger.
The asymmetry of near-wall capsules is thought to facili-
tate their locomotion towards the center of a channel, which
is known as shear-induced migration (Bishop et al. 2001;
Freund and Orescanin 2011). For the ξo = 1.7 cases with
biconcave equilibrium shapes, capsules in Fig. 3c and d do
not show any significant shape distortion for the range of
capillary numbers simulated. In the large ξo = 3.0 cases
(Fig. 3e, f), some capsules fold (as visualized specifically
in Fig. 4), which seems to disrupt their otherwise relatively
ordered flow. This will be analyzed subsequently as a buck-
ling mechanism, and the increased resistance this causes
will be quantified as an effective viscosity. It can also be
seen that the obvious cell-free layer in the smaller ξo cases
seems to disappear in this largest ξo = 3.0 cases; this too is
quantified in subsequent sections.

Fig. 3 Flow visualizations for
Hc = 0.25, W = 14ro for
u∗ = 0.2 and u∗ = 1.0 and
ξo = 1.0, 1.7 and 3.0 as labeled.
For these visualizations
L = 30ro

(a) (b)

(c) (d)

(e) (f)
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Fig. 4 Visualizations showing the onset of apparent buckling behavior for Hc = 0.25, W = 14ro u∗ = 1.0 for ξo as labeled. The inset numbers
indicate the buckling metric defined in “Buckling”

Macroscopic resistance: effective viscosity

The behavior of the capsules in flow for different ξo sig-
nificantly alters the effective viscosity of the suspension,

μeff

μ
= − W 2

12μU

〈
dp

dx

〉
. (12)

Reported values for μeff are time averages, which start after
an apparently statistically stationary flow condition has been
reached as quantified in Fig. 5. After an obvious transient,
averaging is initiated once the instantaneous μeff varies by
less than 2 %. This condition is used for all cases reported.

We first consider ξo = 1.6, which best corresponds to
healthy red blood cells and vary Hc and W , as in pre-
vious rheological studies of blood (Barbee and Cokelet

Fig. 5 Instantaneous μeff from Eq. 12 for Hc = 0.25, W = 20ro
and ξo = 2.4. The nominally transient period is shaded, after which
effective viscosity deviates by < 2 %

1971; Fahraeus and Lindqvist 1931). In Fig. 6a, effective
viscosity is found to increase nonlinearly with Hc, in qual-
itative agreement with experimental results (Pries et al.
1992). Even a quantitative comparison with the correspond-
ing empirical fits of Pries et al. (1992) is surprisingly good
despite obvious approximations we make in applying the
current configuration as a model for blood. In Fig. 6b,
we see that the effective viscosity depends approximately
linearly on channel width, which again agrees with experi-
mental findings for blood, matching both the slope over the
range of W considered and values are within 10 %. It should
be recognized in viewing these results that the present chan-
nels are several basic blood cell radii ro across, and so we do
not see the non-monotonic behavior that would be expected
for vessels matching the capsule dimensions, though this too
has been reproduced with similar capsule-scale simulations
(Zhao et al. 2010).

Looking beyond this flow as a model of healthy blood,
which might best correspond to ξo = 1.6, in Fig. 7, we see
that there is significantly richer behavior when ξo is varied
significantly. For all considered Hc, this nominal blood-
like configuration ξo ≈ 1.6 yields a local minimum μeff,
with resistance increasing both toward smaller and larger
ξo. The change is most pronounced for the largest ξo ≈ 3.0
dog-bone geometries. In addition, capsules with ξo ≈ 1.6
are also the least sensitive to changes of hematocrit: for
ξo = 1.6, changing from Hc = 0.05 to 0.20 increases μeff

by only a factor of 1.08, whereas it increases by a factor
of 1.17 for ξo = 1.0 and by 1.73 for ξo = 3.0. We inves-
tigate the mechanisms underlying these observations in the
remainder of the paper and start here by recalling that the
visualizations in Fig. 3 suggest that the large ξo dog-bone
shaped cells do not form any significant cell-free layer. It is
well known that the presence of the cell-free layer decreases
the effective viscosity of blood flow (Alonso et al. 1993;
Alonso et al. 1995; Cokelet and Goldsmith 1991; Reinke
et al. 1986; Reinke et al. 1987), which presents an obvi-
ous candidate mechanism for the seemingly rapid increase
in μeff with ξo.
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Fig. 6 Effective viscosity μeff
from Eq. 12: a as a function of
hematocrit for fixed channel
width and b as a function of W

for Hc = 0.20. Note that the
dashed lines represent empirical
fits of experimental data from
Pries et al. (1992)

(a) (b)

Capsule-free layer

We define the capsule-free layer thickness h to include 1 %
of the collocation points representing the capsule mem-
branes. All results are insensitive to this specific threshold;
the boundary between the nominally capsule-free layer and
the capsule-rich region is relatively sharp, and so chang-
ing this criterion to 15 % resulted in less than a 0.5 %
change in h/W for typical cases. In Fig. 8, it is clear
that ξo ≈ 1.6 discocyte geometries maximize the capsule-
free layer thickness, which would indeed reduce μeff. We
also see that faster flow (u∗) increases h for all cases with
ξo � 2.0, similar to experimental observations for red blood
cells (Yamaguchi et al. 1992; Alonso et al. 1993; Alonso
et al. 1995). For nearly circular capsules (ξo � 1.2), h

decreases modestly, consistent with experiments on hard-
ened capsules and red blood cells (Simchon et al. 1987;
Kozlovskaya et al. 2014). Most notable in Fig. 8, however,
is that the sharp change to a much thinner layer for ξo � 2.0

suggests a fundamental change in the microstructural flow
dynamics, which is investigated more thoroughly in the
“Capsule orientation” section.

Capsule orientation

We begin our investigation of the capsule-scale flow struc-
ture by again considering the visualizations in Figs. 3 and 4,
noting that the ξo � 2.0 capsules appear to have a tendency
to fold, change orientation, and in certain cases apparently
buckle. This seems to disrupt the relatively ordered arrange-
ments of ξo � 2.0 capsules, and corresponds with the
apparent decrease of h. We start by considering the mean
orientation angle and its variation in the different cases.

A nominal orientation is quantified based upon the ori-
entation of a fitted ellipse determined by the eigensystem of

Mij = 1

l

∫
l

x′
ix

′
j dS(x), (13)

Fig. 7 Effective viscosity for
several different cases of Hc and
ξo, with W/ro = 20 and u∗ = 1
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Fig. 8 Dependance of the capsule-free layer thickness on ξo and
capillary number u∗, shown for cases with W/ro = 20 and Hc = 0.25

where l is the capsule membrane length, and x′ is the surface
position relative to the centroid: x′ = x − xc. The eigenval-
ues λ1,2 and corresponding eigenvectors e1,2 of M define a
fitted ellipse,

x = √
2λ1e1 sinψ + √

2λ2e2 cosψ, (14)

where ψ ∈ [0, 2π ]. The nominal orientation angle α is
taken to be that between major axis of the ellipse and the
normal to the channel wall (see Fig. 9).

The mean orientation 〈α〉 changes significantly for dif-
ferent ξo, as shown in Fig. 10. Nearly circular equilibrium
geometries (ξo ≈ 1.0) on average orient with 〈α〉 ≈ 45◦,
corresponding to the visualization in Fig. 3. For ξo ≈ 1.6,
corresponding to a discocyte type conformation, 〈α〉 ≈ 0,
which has been seen in experiments (McWhirter et al. 2009;
Brust et al. 2014). However, the still more elongated dog-
bone shapes deviate abruptly from this behavior, starting at
ξo ≈ 2.0 and tend to orient themselves on average with
〈α〉 ≈ 15◦. This sharp deviation is of similar character to
both Figs. 7 and 8.

Fig. 9 Schematic of model capsules (solid) and their respective fitted
ellipsoids (dashed)

Fig. 10 Mean orientation angle for varied ξo and flow strengths u∗.
Hc = 0.25 and W/ro = 20 for all cases

The visualizations in Fig. 3 also suggest that the ori-
entations also become more varied for ξo � 2.0 as the
capsules fold and appear to tumble, which we quantify with
the orientation variance

σα =
〈
αi − 〈α〉2

〉1/2
. (15)

Anticipating that σα depends on an apparent buckling-
like mechanism discussed in “Buckling”, which in turn is

Fig. 11 Variance of orientation angle σα as a function of configuration
aspect ratio and capillary number for W/ro = 20 and Hc = 0.25. The
vertical dashed lines represent approximate geometry and behavioral
regimes as indicated
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Fig. 12 Auxiliary flow
configurations: (a) capsules in a
Taylor–Green stagnation point
flow and (b) homogeneous shear

(a) (b)

expected to be sensitive to the aspect ratio (slimness ratio)
of the capsules, we plot the orientation variance against the
aspect ratio of the rest configurations of the capsules: l1/l2.
This is shown in Fig. 11, and it is clear that there is a sig-
nificant and sudden increase in orientation angle variance
in the range 4.5 � l1/l2 � 6.5, which corresponds to
1.8 � ξo � 2.2. There is also an increase in σα for small ξo,
which have l1/l2 ≈ 1, but this is less consequential because
l1 and l2 are nearly the same for small ξo, and presumably
due to the fact that relatively minor perturbations can change
the nominal orientation of an ellipse fitted to a nearly round
capsule.

Buckling

To explore the apparent buckling of the capsules in channel
flow, we consider it in two more idealized flow configu-
rations. The first is a Taylor–Green flow (Fig. 12a), with
velocity components

Ux = A sin

(
2π

L
x

)
cos

(
2π

L
y

)
, (16)

Uy = −A cos

(
2π

L
x

)
sin

(
2π

L
y

)
, (17)

where A is the flow strength and L = 80 ro is the peri-
odic length of the square domain; it was confirmed that
results were independent of this computational domain
within ±40 ro. A single capsule is placed vertically at the
stagnation, such that it will be compressed by the flow as
shown in Fig. 12a. A small perturbation is applied to the
shape of the membrane just before the flow is imposed with

xpert = x + ε sin10
(

y π

l1

)
, (18)

where ε = 0.01ro and as before l1 is the longest at-rest
membrane dimension. In this flow, the magnitude of the
relevant velocity scale is given by the velocity difference
across the capsule. The second flow is the homogeneous
shear shown in Fig. 12b, which was imposed in the usual
way (Zhou and Pozrikidis 1995; Metsi 2000). The relevant

velocity scale is again given by the velocity drop across the
capsule; in the case of homogeneous shear, this is Ushear =
γ̇ � where γ̇ is the shear rate and � is the vertical distance
across the capsule. The capsule is initialized in its equilib-
rium shape and positioned at 25◦ from the horizontal (as
shown in Fig. 9), though we verify that our results produce
a consistent onset of buckling for deviations of ±15◦ of this
initial angle.

The visualizations of Figs. 3 and 4 show several exam-
ples of nominally buckled capsules. This is quantified based
upon the principal axes of the fitted ellpses: λ ≡ λ1/λ2,
where λr is the equilibrium value for a particular ξo. A buck-
led capsule will transition from elongated (λ ≈ λr) to larger
λ, up to λ � 1. Some example λ values for different shapes
are included in the visualizations of Fig. 4).

We see in Fig. 13 that an example λ(t) history for a ξo =
2.6 capsule has four large spikes, each reaching near λ = 1,
indicating four buckling events. This behavior is typical of

Fig. 13 Buckling parameter λ ≡ λ1/λ2 from Eq. 14 for representative
biconcave ξo = 1.6 capsule and a dog-bone shaped ξ = 2.6 capsule.
Dashed lines show the equilibrium λ = λr condition. In both cases,
Hc = 0.25, u∗ = 1.0 and W = 20ro
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Fig. 14 Scaling of critical
buckling aspect ratio due to
forcing F ∗ due to the fluid.
Visualizations show buckling
examples from the different
flow fields for ξo = 2.8, u∗ = 1.
The channel has W/ro = 20 and
Hc = 0.25. The straight lines
are power-law fits F ∗ ∼ l−b

c
with b = 2.65 for the channel,
1.82 for the stagnation flow, and
1.82 for the homogeneous shear

these capsules. During the course of the simulations nearly
all dog-bone geometry capsules are observed to buckle at
least once, and typically about 20 % of them are buckled at
any given time. A corresponding biconcave ξo = 1.6 case
also shown in Fig. 13 has a nearly constant λ for its entire
history. To provide a specific metric, we take λ ≥ 5λr to be
buckled.

To compare the different configurations, we defined a
non-dimensional critical force, F ∗ ≡ F/μUlo where U is
the relevant velocity scale as described previously. For Euler
buckling, this should scale as F ∗ ≈ 1/l2c , though there is
no expectation that the present capsules should exactly fol-
low this criterion developed for solid long, slender objects.
Indeed, one might anticipate that the model capsules would
be better described as approximately axially loaded shells,
which have a power-law buckling threshold l−b

c with 1 <

b < 2 (Lancaster et al. 2000; Bushnell 1981). In Fig. 14,
for the stagnation point flow, we find F ∗ ∼ l−1.82

c and
for the shear flow F ∗ ∼ l−1.84

c . The channel flow shows
more ready buckling, with l−2.65

c , possibly due to the finite-
amplitude disturbances arising from capsule-capsule and
capsule-wall interactions. Studies of red blood cells show
in-plane reversible buckling of healthy cells does occur in
an optical trap (Ghosh et al. 2006).

Influence of buckled capsules and their kinematics

Buckling behavior also corresponds to a fundamental
change in other kinematic behavior of the capsules.
Figure 15a and b contrast the y–t trajectories of five arbitrar-
ily selected capsules for ξo = 2.6 and ξo = 1.6 cases. It is
clear that the ξo = 2.6 capsules undergo much more lateral
migration than the ξo = 1.6 capsules. The buckled capsules
appear to roll in the flow, which is confirmed by plot-
ting their orientation angle history α(t), as computed in the
“Capsule orientation” section, in Fig. 15c, d. In Fig. 15c, a

ξo = 2.6 capsule that repeatedly buckles (based on λ > 5λr)
continually changes angle relative to one that does not.
These sudden changes of orientation seem to cause disrup-
tions in the flow, which have consequences of increased
interactions with nearby capsules, apparent reduction of
capsule-free layer thickness, and an increase of effective
viscosity. For the corresponding non-buckling ξo = 1.6
case, the capsule angles are typically much less varied
(Fig. 15d).

We statistically analyze the overall behavior associated
with the specific examples of Fig. 15 by computing the
average transverse velocity of the capsules, ẏ. This pro-
vides a measure for the lateral migration of different capsule
geometries. We also quantify the mean absolute transverse
distance traveled,

�y = 1

N

N∑
i=1

max
j,k

|yi(tj) − yi(tk)|, (19)

as another measure of this. It should be noted that �y, as
defined, is dependent upon the time over which (19) is cal-
culated; here, a capsule advected at speed U would have
traveled a streamwise distance of 18L/ro. In Fig. 16 there
is an apparent jump to large �y and 〈ẏ〉 for ξo � 2.0,
which agrees with a similar distinct behavior shown in
Fig. 15 and particularly Fig. 11, which shows the rapid
increase in capsule-angle variance for ξo ≈ 1.9. This seems
to be an evident change in mechanism where the behav-
ior of 〈ẏ〉 and �y scale approximately logarithmically for
circular and biconcave geometries, but are constant for elon-
gated capsules (ξo � 2.0). For the cases simulated in
Fig. 15, it is found that capsules that buckle during the
course of the simulation experience approximately 1.4 times
more vertical migration as an average non-buckling cap-
sule (see Fig. 15), which then have a proportionally larger
hydrodynamic influence on other capsules in the flow.
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Fig. 15 Transverse position for
five representative biconcave
and dog-bone capsules with
Hc = 0.25, W/ro = 14 and
u∗ = 1.0. The orientation
history of a buckled (c, dotted)
versus non-buckled dog-bone
capsule (c, solid) are shown as
defined (see text), as well as the
orientation of a biconcave
capsule (d)

(a)

(b)

(c)

(d)

Hydrodynamic interactions

The kinematic observations of the previous subsection sug-
gest that large ξo capsules buckle more readily, leading to
a rolling motion and greater transverse transport. Though
the interaction dynamics are intricate, we can quantify some
of their basic characteristics through multipole moments

Fig. 16 The average transverse velocity of the capsules 〈ẏ/U 〉 and
transverse displacement �y/ro from Eq. 19. We also show �y for
exclusively capsules that have buckled at least once during the course
of the simulation, (�y/ro)b

of the capsules hydrodynamic influence (Pozrikidis 1992;
Guazzelli and Morris 2012). These are defined by expand-
ing the Stokeslet Sij in Eq. 8 about the capsule centroid
x′ = 0,

Sij(x − x′) = Sij(x) − x′
k
∂Sij

∂xk
(x) + · · · , (20)

where x is a point far from the capsule such that |x|  |x′|.
When substituted into the boundary integral equation (7),
this reduces to

ui(x) − Ui(x) = − Fj

8πμ
Sij(x) + Qjk

8πμ

∂Sij

∂xk
(x) + · · · , (21)

where Fj is the hydrodynamic drag force and Qjk is the first
moment of the traction about the capsule membranes �,

Qjk =
∫
�

(σjlnl) x′
k ds. (22)

Splitting Qjk into its symmetric and skew-symmetric parts,

Qjk = Gjk + Rjk, (23)

yields the symmetric stresslet Gjk and skew-symmetric rot-
let Rjk, which is associated with the hydrodynamic torque.
These provide a means of estimating to leading order the
contribution of stress and rotation to the hydrodynamic
influence of each capsule.

In Fig. 17, we plot the matrix norms ‖G‖ = √
GijGji

and ‖R‖ = √
RijRji for increasing ξo. The leading-order

stresslet contribution has a minimum for nearly circular
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Fig. 17 Stresslet Gij and rotlet Rij strengths for different ξo for Hc =
0.20, u∗ = 1 and W = 20ro

capsules ξo ≈ 1.0, as expected because they are compact
and seemingly interact with the flow the least (see Fig. 16),
and more interestingly a local minimum at ξo ≈ 2.0. At
this point, it seems that potential tank-treading motions
are balanced by the tumbling behavior of elongated cap-
sules. Hydrodynamic interactions are then minimized for
very nearly circular geometries, and locally small for bicon-
cave 1.5 � ξo � 2.0 configurations. This seems to have
the implication that capsules with 1.2 � ξo � 1.5 have
decreasing resistance to traveling through narrow confines.
In contrast, Rij becomes relatively stronger only for ξo �
2.0 due to the elongated capsule membrane and corresponds
to the onset of buckling and increasing effective viscosity.

Conclusions

The role of capsule reduced area was studied in regard
to the dynamics of capsule suspensions flowing in narrow
confines. A two-dimensional model system was studied,
so no quantitative one-to-one correspondence is expected
with actual three-dimensional capsules systems. However,
its success at reproducing important known phenomena sug-
gests that it can be informative for realistic configurations,
including blood flow.

The principal observation was a sudden change in the
suspension behavior for capsules with membranes with
equilibrium lengths about twice that of the minimum (ξo ≈
2.0). This was manifested in the overall rheology as quan-
tified by a significant jump of the effective viscosity of
the suspension. Corresponding changes observed at the cap-
sule scale for ξo � 2.0 were a significantly diminished
cell-free-layer thickness, significant variation in the cap-
sule orientation, increased lateral transport, and increased
leading-order rotlet contribution to the multipole expansion.

These observations corresponded to the onset of a buckling
behavior, which were shown to scale with capsule aspect
ratio consistent with expectations for shell membranes.
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