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Observations in experiments and simulations show that the kinematic behaviour of an
elastic capsule, suspended and rotating in shear flow, depends upon the flow strength,
the capsule membrane material properties and its at-rest shape. We develop a linear
stability description of the periodically rotating base state of this coupled system, as
represented by a boundary integral flow formulation with spherical harmonic basis
functions describing the elastic capsule geometry. This yields Floquet multipliers that
classify the stability of the capsule motion for elastic capillary numbers Ca ranging
from Ca= 0.01 to 5. Viscous dissipation rapidly damps most perturbations. However,
for all cases, a single component grows or decays slowly, depending upon Ca, over
many periods of the rotation. The transitions in this stability behaviour correspond to
the different classes of rotating motion observed in previous studies.

Key words: biological fluid dynamics, capsule/cell dynamics

1. Introduction
Thin elastic membranes enclosing liquids, which have come to be called capsules,

are central to many applications. They are manufactured for purposes such as
inkjet printing (Leelajariyakul, Noguchi & Kiatkamjornwong 2008), use in cosmetics
(Miyazawa et al. 2000; Martins et al. 2014), releasing aromas and flavours (Gibbs
et al. 1999; Pop 2011) and absorbing CO2 in gas plumes (Vericella et al. 2015).
Similarly, they are attractive for biomedical applications, including drug delivery
(Lim 1984; Dey, Majumdar & Rao 2008; Paret et al. 2015), contrast-enhanced
ultrasound imaging (Furlow 2009) and the development of artificial blood and
organs (Kuhtreiber, Lanza & Chick 1998; Chang 2010). The collective flow of
such suspensions depends upon the dynamics of the capsules, which has motivated
extensive studies (Barthès-Biesel 2016). The stability of the capsule motion when
subject to shear flow is expected to be important for their behaviour, either in isolation
or in dense suspensions. If the capsule motion is steady or periodic for particular
flow conditions, we anticipate less overall flow resistance than if it is fundamentally
unstable. Unsteady capsule motion can also be expected to cause additional stress
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FIGURE 1. (Colour online) The capsule–homogeneous-shear-flow configuration; pξ and pζ
are points used to define deformation and motion in § 2.

on the capsule membranes themselves, which are often fragile (Goosen et al. 1985;
Gåserød, Sannes & Skjåk-Bræk 1999). Studies of capsule stability have been based
on observations, especially in simulation models. We develop a complementary direct
stability analysis of the coupled capsule–shear-flow system. Similarly to the primarily
empirical studies that guide us, our analysis is based on numerical methods. However,
these methods are used here to construct a linearized system for analysis, which
is advantageous in that it predicts the linear behaviour of the complete basis of
membrane perturbations included in the numerical discretization, not necessarily just
those directly observed in flow simulations.

We consider both spherical and ellipsoidal capsules in homogeneous shear flow,
as shown schematically in figure 1. This configuration can produce rich and varied
capsule kinematics, depending upon the capsule shape and flow strength (Dupont,
Salsac & Barthès-Biesel 2013). Simulation-based studies have both considered the
viscous Stokes-flow limit (Dupont et al. 2013, 2016) and included finite inertia
(Cordasco & Bagchi 2013; Wang et al. 2013); here, we only consider the viscous
limit. For prolate capsules, weak flow and long times, capsules have been observed to
reach an apparently steady rolling or tank-treading motion, for which the membrane
rotates in the shear plane about a deformed capsule shape (Dupont et al. 2013).
Such a configuration is visualized in figure 1, with ex–ey spanning the nominal shear
plane. For stronger shear, in addition to rotation, the capsule also precesses around
the base-flow vorticity axis (ez), and for still stronger shear, a so-called swinging
motion is observed, where a time-periodic deformation cycle appears in addition to
the tank-treading motion (Dupont et al. 2013; Wang et al. 2013). Oblate capsules
have been observed to undergo similar motion at long times (Cordasco & Bagchi
2013; Wang et al. 2013; Dupont et al. 2016). For weak flows, oblate capsules take
on a swinging motion, and can wobble with increasing shear rate. In this case, the
capsule orientation oscillates about an axis not aligned with the shear-flow vorticity.
For sufficiently strong shear rates, the capsule rolls, its deformed membrane rotating
about the ez axis (Dupont et al. 2016).

Simulations suggest that the long-time capsule orientation and cyclic motion are
independent of the initial capsule orientation, as quantified by the angle of the
longest principal axes of a fitted ellipsoid with respect to the shear plane (Dupont
et al. 2013, 2016). However, there is some ambiguity in reported results (Cordasco
& Bagchi 2013), which has been hypothesized to result from insufficient observation
times (Dupont et al. 2016). It is a challenge with finite-time simulations to determine
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unambiguously that longer times do not yield qualitatively different conclusions. Such
observations also do not directly classify the stability, and risk missing kinematic
behaviour that might be sensitive to initial perturbations. Particular deformations
are known to be unstable in other flows, such as a slender capsule subjected to
strong extensional flow (Zhao & Shaqfeh 2013) and capsule trains flowing within
channels (Bryngelson & Freund 2016) and tubes (Bryngelson & Freund 2018). Our
goal is to classify the stability of capsules in shear flow based on analysis of the
corresponding linear system. We develop a linear stability analysis that includes a
complete basis (for the selected spatial resolution) of capsule membrane perturbations,
as represented with spherical harmonic functions. This is used to determine the rate
at which perturbations grow or decay.

We consider perturbations to the fixed-point configurations deduced in previous
simulation studies (Dupont et al. 2016) and analyse the stability of the periodic
rotation with Floquet methods. Similar methods have been used to classify the stability
of flow in periodically forced lid-driven cavities (Cazemier, Verstappen & Veldman
1998; Blackburn & Lopez 2003), periodic vortex streets shed by rings (Sheard,
Thompson & Hourigan 2003, 2004) and square and circular cylinders (Barkley &
Henderson 1996; Gioria et al. 2009; Sheard, Fitzgerald & Ryan 2009), pulsatile
channel (Von Kerczek 1982; Pier & Schmid 2017) and pipe flows (Blennerhassett &
Bassom 2007; Thomas, Bassom & Blennerhassett 2012), and Stokes layers adjacent
to oscillating boundaries (Blennerhassett & Bassom 2002; Davies et al. 2015; Thomas
et al. 2015). These studies generally rely to some degree upon numerical methods, as
does ours. Few Floquet studies include fluid–structure interaction; the present analysis
is perhaps most closely related to the Floquet analysis of axisymmetric rigid particles
in shear flow with weak inertia (Einarsson, Angilella & Mehlig 2014), although in
that case the rigid-particle dynamics allows for a tractable analytic linearization of the
governing equations about the periodic particle motion. The deformable membrane
introduced here presents additional complexity that seems to preclude direct extension
of that formulation.

The details of the specific configurations we consider are introduced in § 2. The
numerical methods used for constructing the periodic base flow, the stability analysis
and the corresponding direct numerical simulations (DNS) are summarized in § 3. We
verify that our simulations reproduce particular results of previous studies in § 4; these
also provide the time-periodic base flows for our subsequent Floquet analysis. The
stability analysis is developed in § 5, with results presented in § 6 for a range of flow
strengths.

2. Capsule–flow system
The initial capsule shape x= {x, y, z} in figure 1 is a spheroid with

x2
+ y2

b2
+

z2

a2
= 1, (2.1)

where a/b is the aspect ratio and ro = (b2a)1/3 is the radius of a sphere of the same
volume. The capsule perturbs a homogeneous shear flow,

u∞(x)= γ̇ yex, (2.2)

where γ̇ is the shear rate. Following Dupont et al. (2016), we define ζ (t) as the
instantaneous angle between the ez axis and the shortest capsule principal axis.
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666 S. H. Bryngelson and J. B. Freund

Similarly, ξ(t) is the angle between the ez axis and a segment extending from the
capsule centre to the point that was initially on the shortest principal axis at time
t= 0. The corresponding points on the capsule are pζ and pξ , as labelled in figure 1.
Both the interior and the exterior fluid are Newtonian and incompressible with the
same viscosity µ.

The capsule membrane elastic resistance is described using the Skalak constitutive
model (Skalak et al. 1973) with strain energy

W =
Es

8
(I2

1 + 2I1 − 2I2)+
Ed

8
I2

2, (2.3)

where Es is the shear modulus, Ed = CEs is the dilatation modulus (where C sets its
relative strength) and I1,2 are the usual strain invariants. Bending is resisted through
a linear isotropic model (Zhao et al. 2010) with bending moment

M =−Eb(κ − κ
R), (2.4)

where Eb is the bending modulus, κ is the second fundamental form of the
surface (the covariant component of the Riemann curvature tensor) and κR is the
corresponding second fundamental form of the reference shape (2.1). We take
Eb = 5 × 10−3Esr2

o, which reflects values of typical capsules (Walter, Rehage &
Leonhard 2001; Guckenberger & Gekle 2017), except for select cases in § 4, for
which Eb = 0 is used to facilitate comparison with other studies. An elastic capillary
number Ca ≡ 2γ̇ µro/Es serves as a measure of flow strength, with the factor of 2
included to match previous definitions (Lac et al. 2004; Dupont et al. 2016).

3. Numerical methods
The capsule membrane shape is represented by a sum of spherical harmonics as

x(θ, φ)=
N−1∑
n=0

n∑
m=0

P̃m
n (sin θ)(anm cos mφ + bnm sin mφ), (3.1)

where x defines the capsule surface, P̃m
n are normalized Legendre polynomials, and anm

and bnm are coefficients The relatively small number of modes required to accurately
describe the capsule shape and the mutual orthogonality of the spherical harmonic
basis functions are important for our stability formulation and analysis.

Here, we use N = 8, although three times this amount is carried for dealiasing
nonlinear evaluations in the simulations we present (Zhao et al. 2010); we verify
that the instability amplification rates of § 6 vary by less than 2 % for N = 10. The
coefficients are represented compactly as s = {a(i)nm, b(i)nm}, where i = 1, 2, 3 is the
coordinate direction index, n > m per (3.1), and irrelevant bn0 are omitted from s for
all n; together, these give s a total of 3N2 components. The membrane collocation
points x= {x(i)(θk, φl)} for coordinate direction i= 1, 2, 3 are computed by (3.1) with
θk ∈ (0,π) for k=1, . . . ,N colatitudinal Gauss points and φl ∈[0,2π) for l=1, . . . ,2N
uniformly spaced longitudinal points (Adams & Swarztrauber 1997). The forward and
reverse discrete spherical harmonic transforms are compactly expressible as

x= Bs and s= B̃x. (3.2a,b)

The Reynolds numbers of capsule flows are often much less than unity, so inertia
is neglected and the velocity of the capsule surface, u(x), is represented with standard
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FIGURE 2. (Colour online) Comparison with Lac et al. (2004) for a/b= 1 and Ca and C
as indicated: (a) Taylor parameter, (b) inclination angle and (c) rotation period (see text).

boundary integrals (Rallison & Acrivos 1978; Kim & Karrila 1991; Pozrikidis 1992),
which are discretized and evaluated using a quadrature scheme for the collocation
points x (Freund & Zhao 2010). The free-space Green’s function of the Stokes
equation is evaluated directly for all interactions. With the velocity computed from
the boundary integral evaluation, the capsule surface moves simply as

dx
dt
= u(x), (3.3)

which in our simulations is integrated in time with the forward Euler method xj+1
=

xj
+1t u(xj), where 1t = 10−3T is the time step and T is the period of the capsule

motion.

4. Cycles of capsule motion
We construct periodic base states of the capsule motion for cases with capillary

number Ca, dilatational resistance factor C and aspect ratio a/b selected to match
commonly studied configurations, which also serves to facilitate verification of
our numerical method and stability formulation. First, we take a spherical capsule
(a/b= 1) and compare with Lac et al. (2004). The capsule motion and deformation
are quantified by the Taylor parameter,

Dij(t)≡
|Li(t)− Lj(t)|
Li(t)+ Lj(t)

, (4.1)

where the Li are the principal axes of the linear least-squares fitted ellipsoid of the
capsule (with eigenvalues decreasing from i= 1 to i= 3), the inclination angle Φ of
L1 with respect to the flow direction ex, and the period of the capsule rotation T . The
period is calculated such that ‖s[t]− s[t+T]‖< 10−4, where ‖·‖ indicates an L2 norm.
Long-time values are denoted by D∞ij and Φ∞, and these preparatory simulations are
run until D∞12 and Φ vary by less than 0.1 % over a T period.

Figure 2 shows that D∞12, Φ∞ and T match closely with those of Lac et al. (2004).
For this comparison, we do not include membrane bending resistance (Eb = 0),
consistent with their simulations. As a result, the capsule membrane buckles (Walter
et al. 2001; Lac et al. 2004; Barthès-Biesel 2009; Foessel et al. 2011) and forms
features at the scale of the numerical discretization. As such, it is potentially sensitive
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FIGURE 3. (Colour online) Cases with a/b= 0.5, C= 1, Eb= 0 and Ca= 0.3: (a) ξ(0)=
ζ (0)= 30◦ and (b) ζ (0)= 30◦ and 75◦.

to the mesh (Barthès-Biesel 2009; Dupont et al. 2016). However, such sensitivity is
not seen in figure 2 for a spherical capsule, where the results of our dealiased spectral
method match those of the finite-element description (Lac et al. 2004).

Oblate capsules with a/b= 0.5 will also be considered as reference configurations
for the subsequent stability analysis, and they are compared with the results of
Dupont et al. (2016) in figure 3. The evolving principal axis angles ξ(t) and ζ (t)
are qualitatively similar to their reported results. However, for tγ̇ & 400, our results
approach the same ζ = ξ = 90◦ values. We hypothesize that the small differences
for tγ̇ . 300 are due to differences in the numerical methods, as the capsules do
not resist bending and buckle with features with wavelengths comparable to the
spatial discretization. As such, the numerical smoothing (or artificial membrane
stiffness) at the length scales of the discretization, characteristic of finite-element
methods, could explain the differences. The spherical harmonic basis functions and
dealiasing procedure used here minimize numerical smoothing, although our method
still truncates the spherical harmonic series at degree N. We confirm that the presented
ζ (t) and ξ(t) for tγ̇ . 300 vary by less than 3 % on increasing to N = 10, and note
that only the long-time behaviour is important for the primary objectives of our
analysis. We also include finite Eb in all subsequent calculations.

With agreement established with previous simulations, we focus on cases with
a/b = 0.5, C = 1, and Ca ranging from 0.01 to 5, commensurate with previous
empirical studies of capsule stability (Dupont et al. 2016). Our small Eb =

5 × 10−3Esr2
o is both realistic and suppresses short-wavelength buckling, consistent

with the absence of buckling reported in experimental observations (Barthès-Biesel
2009). It also provides a physical regularization that removes mesh dependence
from the linear stability analysis (§ 5). We analyse capsules initiated with both
ζ (0) = ξ(0) = 0◦ and ζ (0) = ξ(0) = 90◦, which are anticipated fixed points of the
capsule motion (Barthès-Biesel 2016).

The base capsule motion is visualized for select cases in figure 4 and classified
for the range of Ca we consider in figure 5. The capsules tumble, swing, tank-tread
or roll, as defined by Dupont et al. (2016). Capsules initiated with ζ (0)= ξ(0)= 0◦
roll for all values of Ca considered. In contrast, cases with ζ (0) = ξ(0) = 90◦ have
qualitatively different motion depending upon Ca: for Ca . 0.2, the capsule tumbles;
for 0.2.Ca. 0.9, it swings; for Ca& 0.9, it tank-treads. For sufficiently large Ca, the
tank-treading behaviour is visually indistinguishable from a rolling motion, although
it can be uniquely identified by tracking pξ . These base flows are all time periodic
per our specification, and as such are analysed with Floquet methods.
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FIGURE 4. (Colour online) Visualizations of capsules over one half-period T/2 for Ca as
labelled and (a) ζ (0)= ξ(0)= 0◦ and (b) ζ (0)= ξ(0)= 90◦. The px point is fixed on the
membrane surface at z= 0.

Tumbling Swinging Tank-treading Rolling

Ca
10-2 10-1 100 101

Ω(0) = ≈(0) = 0°

Ω(0) = ≈(0) = 90°

(a)

(b)

FIGURE 5. (Colour online) Base-flow capsule behaviour (see text) for a/b = 0.5, C = 1
and initial orientations as labelled.
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670 S. H. Bryngelson and J. B. Freund

5. Floquet analysis formulation

The formulation is based upon that developed to analyse steadily flowing red blood
cell trains (Bryngelson & Freund 2016, 2018), although here it is extended to include
the time-periodic rotation of the capsule. In overview, the linearization proceeds by
introducing δ[t] as a small perturbation to s[t]. Expansion of (3.3) and linearization
yields

A[t]δ[t] = B̃{u(B{s[t] + δ[t]})− u(Bs[t])}. (5.1)

A full-rank orthogonal set of perturbations δi are used sequentially to calculate each
column i of matrix A[t] at time t. For the results presented, we take ‖δ[t]‖= δ= 10−3,
and A[t] is evaluated at j= 1, . . . , Nt uniformly spaced times tj = ( j− 1)T/(Nt − 1)
with Nt= 104. Results are insensitive to these specific choices of numerical parameters.
With A so determined, the evolution of any small perturbation to the spherical
harmonic coefficients ε[t] is then governed by

dε[t]
dt
= A[t]ε[t]. (5.2)

Since A[t] is periodic, (5.2) is a canonical Floquet system with solution of the form

ε[t] = X [t]εo, (5.3)

where X [t] is the fundamental solution matrix. Following usual procedures (e.g.
Verhulst 2006), we assume that ε[t] has the form

ε[t] =
3N2∑
i=1

cipi[t] expµit, (5.4)

where ci are constants, µi are exponential growth rates and pi[t] are unknown periodic
functions. Periodicity requires

X [t+ T] = X [t]X−1
[0]X [T] = X [t]C, (5.5)

where C = X−1
[0]X [T] is the monodromy matrix (Liu 2003; Verhulst 2006).

Substitution of (5.3) into (5.2) yields a system to be solved for X [t],

dX [t]
dt
= A[t]X [t]. (5.6)

A key to Floquet analysis is that the stability properties can be determined
independently of the initial condition X [0] (Liu 2003; Verhulst 2006); we follow
the usual practice of selecting identity X [t1 = 0] = I , so C = X [T] is the principal
fundamental matrix. In our calculations, X [tNt = T], and thus C, is found by
integrating (5.6). For this, we use the trapezoidal rule (2I − 1tA[tj+1])X [tj+1] =

(2I + 1tA[tj])X [tj], which preserves time reversibility and thus does not introduce
numerical dissipation. The eigenvalues ρi = exp µiT of C are the Floquet multipliers,
the factors by which ‖ε[t]‖ for component i of (5.4) grows or decays over a period.
Components with |ρi|> 1 are unstable.
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FIGURE 6. (Colour online) The spectrum of C for a/b= 0.5, C= 1, Ca= 1.4 and ξ(0)=
0◦. The ρ are categorized as neutrally (ρo), modestly (ρ−) or very (ρb) stable (see text).
Open symbols are ρ− for Ca between 0.5 and 2.

6. Results

We first consider the a/b = 0.5 capsules of § 4, example Floquet multipliers for
which are shown in figure 6. There is a complex conjugate pair of modestly stable
multipliers |ρ−|= 0.84, which decay over many periods of the rotating capsule motion,
and a neutrally stable multiplier ρo= 1; these have associated eigenvectors v− and vo

respectively. Neutrally stable multipliers are only determined within the accuracy of
our calculations, which for this case is within ρo = 1± 10−2. This is a result of the
approximations introduced by the finite δ used when constructing A, the discretization
of A[t] in time, and the convergence of the periodic base-flow motion; the coupling
between these errors makes quantification of their relative importance challenging,
although the details of the coupling are not directly relevant to the conclusions of
this paper. For example, if the nominally neutral modes were in fact mildly unstable
within this constraint, they would require t > 700T – over 700 periods of rotation –
to amplify by a linear mechanism from an initial perturbation amplitude ε̂ = 10−3 to
unity. Thus, this accuracy is taken to be sufficient to support our conclusions. All
other Floquet multipliers of figure 6 are very stable and have |ρ| ≈ 0, with their
associated perturbations vanishing (within the accuracy of our methods) well before
a single period T .

Figure 7(a) confirms agreement between the linear theory and DNS for the vo and
v− modes, which serves as a verification of our procedures. We also include one of
the |ρ| ≈ 0 modes, labelling it vb, and confirm that it decays so fast that the finite
precision of the calculations make it impossible to confirm its specific behaviour at
the end of a T period. The ρb are thus unimportant for multiperiod behaviour.

The eigenvector v−, visualized in figure 7(bii), is a tilt of the capsule about the
ey axis, and, in contrast, the vb is a shorter-wavelength deformation of the capsule.
We anticipate the rapid decay of vb to be due to viscously damped elastic recovery.
The decay rate of elastic perturbations can be estimated in the absence of shear flow
to decay by more than a factor of 100 over time T (Rochal, Lorman & Mennessier
2005; Zhao et al. 2010), matching our observations. The eigenvector vo is simply
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FIGURE 7. (Colour online) (a) Linear prediction and DNS for an initial condition (i.c.)
associated with the eigenvectors of example Floquet multipliers as labelled for several T
periods for a/b= 0.5, C = 1, Ca= 1.4 and ξ(0)= 0◦. The t= T point is indicated by a
dotted line. (b) The corresponding eigenvectors (ii) v− and (iii) vb, magnified as s[0]+ 5v
for visualization.

an advancement of the capsule surface in the rolling direction, and thus its neutral
stability is expected. As such, we focus upon v−.

For the full range of Ca, for both orientations and aspect ratios, each case has one
and only one ρ−-like complex conjugate pair of Floquet multipliers; these |ρ−| are
shown in figure 8. A least-squares quadratic fit of the five values closest to |ρ−| =
1 gives a critical value of Ca(1)c = 0.82 for the stable–unstable transition for a/b =
0.5, and correspondingly Ca(1)c = 0.61 for a/b= 0.6. This is consistent with the trend
noted by Dupont et al. (2016), who observed stable swinging at larger Ca for smaller
a/b. The ρ− are complex at |ρ−| = 1, as shown in figure 6; this is indicative of a
subcritical Neimark–Sacker bifurcation, for which a spiral fixed point changes stability
and produces a limit cycle (Sacker 1964). We note that while the bifurcation is clear,
the v− shape and the perturbed velocity field do not qualitatively change near Ca(1)c .

For ξ(0) = 0◦, the rolling motion is unstable for Ca < Ca(1)c , with |ρ−| increasing
with Ca for Ca<Ca(2)c , where Ca(2)c = 0.13 for a/b= 0.5 and Ca(2)c = 0.08 for a/b=
0.6. It otherwise decreases with Ca. For Ca> Ca(1)c , |ρ−|< 1 indicates stable rolling.
This behaviour reverses for ξ(0)= 90◦ in figure 8(b), where we see that the tumbling
and swinging motions of Ca< Ca(1)c are stable, with |ρ−| decreasing with Ca in the
tumbling regime (Ca<Ca(2)c , where in this case Ca(2)c = 0.21 for a/b= 0.5 and Ca(2)c =

0.14 for a/b= 0.6). For Ca>Ca(1)c , we have |ρ−|> 1, so tank treading is unstable. For
very small Ca< 0.01, |ρ−|→ 1 for both the tumbling and rolling motions, even as the
period T becomes larger, suggesting that in the Ca→ 0 limit, both are neutrally stable.
The stability of the tumbling and swinging motions, as well as the large-Ca rolling
motion, matches the observed long-time behaviour (Wang et al. 2013; Dupont et al.
2016), which confirms that nothing was missed by these more empirically grounded
studies.

7. Discussion and conclusions
The Floquet analysis was designed to quantify (and clarify) the long-time behaviour

of capsules in viscous shear flow, motivated in part by the challenges of performing
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FIGURE 8. (Colour online) Floquet multiplier |ρ−| for the full range of Ca, a/b = 0.5
and 0.6, and (a) ξ(0)= 0◦ and (b) ξ(0)= 90◦. The vertical lines indicate —— Ca(1)c and
– – – Ca(2)c (see text).

and interpreting corresponding long-time simulations. This has not before been
undertaken for this flow. For all cases, most Floquet multipliers are nondescript
membrane deformations that rapidly decay with |ρ| � 1, and thus dissipate within
one period of the base capsule motion. This is also consistent with observations of
actual capsules, which can rapidly achieve a cyclic behaviour (Walter et al. 2001).
An expected neutrally stable mode corresponding to a simple rotation of the capsule
surface in the flow direction was likewise found. The most interesting mode was the
ρ− complex conjugate pair, which decays or grows over several periods. A single
such pair was identified for every set of parameters in the ranges evaluated, although
there has not yet been a formal or extensive search for other possible behaviour
for other configurations. In all cases, stability was quantified as it depends upon
Ca, aspect ratio a/b and the initial capsule orientation ξ(0), with the stable cases
matching the long-time behaviour previously observed.

Our stability formulation is perturbation based and includes coupling between
a full-rank set of perturbations and the base flow, so its construction is relatively
expensive even for simple flows. Data-driven methods, such as those utilizing
dynamic mode decompositions (Schmid 2010; Bagheri 2013; Pumhössel, Hehenberger
& Zeman 2014) or Koopman operator techniques (Rowley et al. 2009; Bagheri
2013), have proved useful if a base flow is unavailable or full construction of the
linear stability analysis is prohibitively expensive. These methods determine the
most unstable growth rate through a series of temporal realizations of the evolution
to disordered flow. Often, only a relatively small number of such realizations is
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required, making such analysis computationally efficient. Further, direct computation
of perturbations to the flow, or construction of an accurate base flow, is not
required. However, such analyses cannot quantify the decay rate for a full-rank
set of perturbations to the system, since the dynamics is dominated by the most
unstable flow behaviour. Although the information they supply is thus limited, we
expect that such methods might be particularly useful for large systems, such as
many-capsule flows. Of course, advancement in computational capabilities will also
facilitate larger-scale direct analyses and perhaps facilitate the discovery of still richer
behaviour.

While the formulation presented here was limited to time-periodic base flows,
methods for relaxing this restriction to time-general flows exist, although they are
challenging since they do not admit the simplifications of Floquet’s theorem. They
typically either require analysis of the fundamental matrix operator directly over long
times through a singular-value decomposition (Schmid & Kytomaa 1994; Schmid
& Henningson 2012) or utilize adjoint operators through an inverse process known
as adjoint looping (Juniper 2011). Such analyses are generally more computationally
expensive than those for the analogous time-stationary or time-periodic flows, although
they are potentially tractable with the methods presented here. Extension of our
formulation in this respect would then be appropriate for any non-time-periodic
capsule flow, such as that of biconcave capsules in sufficiently strong steady (Skotheim
& Secomb 2007) or oscillatory shear flow (Dupire, Abkarian & Viallat 2010), or
single vesicles flowing in narrow confines (Aouane et al. 2014).
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