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a b s t r a c t 

Phase-averaged dilute bubbly flow models require high-order statistical moments of the bubble popu- 

lation. The method of classes, which directly evolve bins of bubbles in the probability space, are accu- 

rate but computationally expensive. Moment-based methods based upon a Gaussian closure present an 

opportunity to accelerate this approach, particularly when the bubble size distributions are broad (poly- 

disperse). For linear bubble dynamics a Gaussian closure is exact, but for bubbles undergoing large and 

nonlinear oscillations, it results in a large error from misrepresented higher-order moments. Long short- 

term memory recurrent neural networks, trained on Monte Carlo truth data, are proposed to improve 

these model predictions. The networks are used to correct the low-order moment evolution equations 

and improve prediction of higher-order moments based upon the low-order ones. Results show that the 

networks can reduce model errors to less than 1% of their unaugmented values. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The dynamics of bubble clouds play a central role in di-

erse applications from analyzing injury from blast trauma ( Laksari

t al., 2015 ), understanding kidney stone pulverization in shock-

nd ultrasound-based lithotripsy ( Pishchalnikov et al., 2003; Ikeda

t al., 2006; Maeda and Colonius, 2019 ), designing artificial heart

alves and pumps ( Brennen, 2015 ), and minimizing cavitation ero-

ion over propellers and hydrofoils ( Chang et al., 2008 ). When

he size distributions of bubble nuclei are broad, the average re-

ponse of the bubbles to pressure fluctuations damps and dis-

erses ( Smereka, 2002; Shimada et al., 2000; Colonius et al., 2008;

ndo et al., 2011 ). Ensemble-averaged bubbly flow models ( Zhang

nd Prosperetti, 1994 ) must account for such size distributions and

isequilibria if they are to represent the dynamics of realistic bub-

ly flows. Current methods for representing such polydispersity

re computationally expensive, even in the dilute limit ( Bryngelson

t al., 2019 ). 

Previous models have approximated statistical moments of

hese populations using the method of classes ( Bryngelson et al.,

019; Ando et al., 2011 ). This approach evolves bins of the bub-

le size distribution. While straightforward, this approach is costly
∗ Corresponding author. 
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n a simulation environment with spatial inhomogeneities, since

t involves solving a large system of equations at each point in

pace. An alternative approach is Monte Carlo methods; they solve

he governing equations by discretely sampling the bubble popu-

ation ( Zhao et al., 2007 ). Unfortunately using Monte Carlo for this

urpose is also expensive, and thus are usually only used for vali-

ation of other methods ( Zucca et al., 2007 ). 

In the present work, we explore moment methods as an alter-

ative to the aforementioned approaches. Moment methods evolve

ome parameters of a distribution, such as moments ( Hulburt

nd Katz, 1964 ) or expected values ( Moyal, 1949 ), that follow

rom a population balance equation. This technique has been used

o model polydisperse bubbly flows, including coalescence and

reakup ( Heylmun et al., 2019 ) and dilute gas-particle flows ( Kong

nd Fox, 2019; Capecelatro and Desjardins, 2013; Desjardins et al.,

008 ), though to our knowledge has not been applied to cavitating

ubble populations, which undergo large volume changes. For non-

inear bubble dynamics the moment evolution equations cannot be

xpressed in terms of only lower order moments. One way to treat

his issue is the quadrature-based moment method (QBMM), which

pproximates unclosed terms by evolving quadrature points and

eights that correspond to an assumed-underlying distribution

often Gaussian) ( McGraw, 1997; Marchisio and Fox, 2005 ). Note

hat specific QBMMs must be chosen to avoid delta-shocks ( Patel

t al., 2017; 2019 ) and negative quadrature node weights ( Vikas

https://doi.org/10.1016/j.ijmultiphaseflow.2020.103262
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2020.103262&domain=pdf
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et al., 2011 ) for two-fluid flow models. Further, high-order moment

predictions are still computationally expensive in this framework. 

Instead, the current model evolves a multivariate probability

density function that describes the bubble distribution. Probabil-

ity calculus and a Gaussian closure ansatz determine the moment

evolution equations. This approach is more general than the classes

method because it utilizes random variables in the full bubble state

configuration (instantaneous and equilibrium radii and radial ve-

locity), rather than just the equilibrium bubble size parameter. This

provides additional model flexibility that can describe, for exam-

ple, experimental conditions that only have statistical estimates of

bubble population state. 

However, this approach is potentially limited for bubble popu-

lations with significant high-order statistics. A more general den-

sity function can address this, though this is computationally ex-

pensive and challenging because of the so-called moment prob-

lem ( Akhiezer, 1965; Stieltjes, 1894 ). Instead, recent developments

suggest that a recurrent neural network (RNN) can efficiently aug-

ment such imperfect dynamical systems, accounting for the de-

pendency of current-time data on previous data ( Wan et al., 2018;

2019; Srinivasan et al., 2019 ). In particular, long short-term mem-

ory (LSTM) RNNs are well suited for this task as they truncate

gradient-based errors when they do not affect the prediction, re-

sulting in short training times ( Hochreiter and Schmidhuber, 1997 )

Here, we use LSTM RNNs to improve model predictions for the

low-order moment evolution and high-order moment evaluation

when high-order statistics are significant. 

Section 2 presents an overview of the bubble dynamic model

and governing equations. Section 3 formulates the density-

function-assumed statistical evolution model ( Appendix A includes

references for specific derivations). Section 4 shows results for lin-

ear bubble dynamics of both R o monodisperse and polydisperse

populations. Section 5 extends this analysis to nonlinear dynam-

ics via the Rayleigh–Plesset equation. Section 6 presents the RNN

that improves model predictions and results from it. Section 7 dis-

cusses the limitations of this method and potential treatments for

them. Section 8 concludes the paper. 

2. Bubble dynamics model 

As a representative scenario, the bubbles are non-interacting,

isothermal, and surface tension is neglected. While such assump-

tions are not appropriate under all circumstances, this model in-

cludes the key driving dynamics and can be appended to repre-

sent additional physical effects. The Rayleigh–Plesset equation thus

represents the single-bubble dynamics: 

R ̈R + 

3 

2 

˙ R 

2 + 

4 

Re 

˙ R 

R 

= Ca 

[(
R o 

R 

)3 γ

− 1 

]
− C p (1)

where γ is the polytropic index, R o is the equilibrium bubble ra-

dius, R is the instantaneous radius, and the dots represent time

derivatives. The Reynolds number, cavitation number, and dimen-

sionless pressure forcing are 

Re ≡
√ 

p o 

ρo 

R 

ref 
o 

νo 
, Ca ≡ p o − p v 

p o 
, C p ≡ p ∞ 

− p o 

p o 
, (2)

respectively, where R ref 
o is a reference bubble size, νo is the ref-

erence kinematic viscosity, ρo is the reference liquid density, and

p v , p o , and p ∞ 

are the vapor, ambient, and liquid far-field pres-

sures. All scales, including R and 

˙ R , are non-dimensionalized by

characteristic length R ref 
o , pressure p o , and density ρo . The bubbles

are gas-filled ( p v = 0 and so Ca = 1 ) and compress adiabatically

( γ = 1 . 4 ). The time-independent pressure ratio p o / p ∞ 

modifies the

bubble collapse strength. In general, phase-averaged model flows

have a time-dependent p ∞ 

, though the time scale of the bubble
ynamics is much shorter than that of the flow that advects them

n these cases. Thus, the time-independent case serves as a model

roblem, though the method presented here can extend to time-

ependent pressures. 

. Density-shape-assumed model formulation 

.1. General, polydisperse model 

The polydisperse bubble dynamics of Section 2 entail three un-

ertain variables: R , ˙ R , and R o . The probability of any such state

�
  = { R, ˙ R , R o } occurring is 

 = P ( � x , � θ, t) , (3)

here P is at most a trivariate probability density function with

arameters (e.g. means, shape parameters) � θ and raw moments � μ′ .
here are 

N q 
 

q =1 

(
N r + q − 1 

q 

)
(4)

uch moments, where N r = 3 is the number of random variables, q

s the moment order index, and N q is the highest moment order.

he specific moments are 

′ 
lmn = 

∫ 
P R 

l ˙ R 

m R 

n 
o d x (5)

here l + m + n = q . 

The governing equation for the probability density function of

ubbles P is the usual population balance equation (PBE) in the ab-

ence of coalescence, breakup, or relative motion ( Vanni, 20 0 0 ): 

d P 

d t 
= 

∂P 

∂t 
+ 

∂ 

∂R 

(P ˙ R ) + 

∂ 

∂ ˙ R 

(P R̈ ) = 0 , (6)

here ˙ R o = 0 since the R o distribution is static ( Ando, 2010 ).

imulation environments entail spatial bubble number transport

hat can be represented via the PBE. We do not consider this

erein becuase it does not impact our conclusions. A marginal PDF

 (R, ˙ R | R o ) can constrain (6) when P ( R o ) is specified, potentially al-

owing for dimension reduction in the R o direction. However, we

ocus primarily on R o -monodisperse populations and do not fur-

her treat (6) . 

The moment system evolves as 

∂ � μ′ 
∂t 

= 

�
 f ( � μ′ , x ) , (7)

here � f is over all moments { l, m, n }: 

f lmn = lμ′ 
l−1 ,m +1 ,n + m 

∫ 
R̈ ( � x ) R 

l ˙ R 

m −1 R 

n 
o P ( � x , � θ) d 

�
 x , (8)

here R̈ follows from (1) and the integration is over the support

f P . We call this the PDF-based model (or PDF) throughout. The

erivation of (8) is in Appendix A . Thus, (7) is a nonlinear system

f integro-differential equations that requires specification of N q , P ,

nd the transformation 

�
 μ′ ⇔ 

�
 θ. The second-order accurate Adams–

ashforth method evaluates the time derivative. 

.2. Monodispersity in R o 

R o -monodisperse cases test the model performance throughout.

 (R o ) → δ(R ∗o − 1) describes these cases, where δ is the Dirac delta

unction, though these populations can still be in bubble size and

elocity disequilibrium. These cases require no R o moments ( n = 0 ,

 = P (R, ˙ R , t) , N r = 2 ). Thus, we compute the R o integral of (8) an-

lytically, resulting in double integrals over R and 

˙ R . 
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. Prediction of linear bubble dynamics 

This section considers linear bubble dynamics as a case for

hich the closure is exact. Linearizing (1) about R = R o yields 

¨
 + β(R o ) ̇ R + ω 

2 (R o )(R − R o ) = −C p 

R o 
(9) 

here 

= 

4 

Re R 

2 
o 

and ω 

2 = 

3 γ Ca 

R 

2 
o 

(10) 

haracterize the damping rate and bubble natural frequency, re-

pectively. 

.1. R o -monodisperse populations 

The integrals of (8) are evaluated analytically for linear R o -

onodisperse bubble populations: 

∂ 
→ 

μ
′ 

∂t 
= 

→ 

f = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

f 100 

f 010 

f 200 

f 020 

f 110 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

μ′ 
010 

−βμ′ 
010 − ω 

2 
(
μ′ 

100 + R o 
)

− C p /R o 

2 μ′ 
110 

−2 
(
βμ′ 

020 + ω 

2 
(
μ′ 

110 + R o μ
′ 
010 

))
μ′ 

020 −
(
βμ′ 

110 + ω 

2 
(
μ′ 

200 + R o μ
′ 
100 

))

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

(11) 

ince �
 f requires only a finite number of moments (only the low-

rder moments, �
 μ′ up to N q = 2 ), this system is closed for any

ve-parameter bi variate distribution P . The multivariate anisotropic

aussian distribution 

 ( � x , � θ) = 

1 

2 π
√ | �| exp 

(
−1 

2 

( � x − �
 μ) � �−1 ( � x − �

 μ) 
)

(12) 

emonstrates this method, where � is the covariance matrix.

hile this allows for negative radii in principle, the support of P

s sufficiently compact that truncating the integration space to the

ositive ( R, R o ) half-plane does not impact our results. 

For R o -monodisperse cases � x = { R, ˙ R } are the random variables,
�
 = { μR , μ ˙ R 

} are their means, and the transformation 

�
 μ′ ⇔ 

�
 θ is 

→ 

θ = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

μR 

σ 2 
R 

μ ˙ R 

σ 2 
˙ R 

ρR ̇ R 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

μ′ 
100 

μ′ 
200 − μ′ 2 

100 

μ′ 
010 

μ′ 
020 − μ′ 2 

010 

μ′ 
110 − μ′ 

100 μ
′ 
010 √ 

μ′ 
200 − μ′ 2 

100 

√ 

μ′ 
020 − μ′ 2 

010 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

→ 

′ 
= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

μ′ 
100 

μ′ 
010 

μ′ 
200 

μ′ 
020 

μ′ 
110 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

μR 

μ ˙ R 

μ2 
R + σ 2 

R 

μ2 
˙ R 
+ σ 2 

˙ R 

μR μ ˙ R + ρR ̇ R σR σ ˙ R 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (13) 

An example linear dynamics case determines if this method

an reproduce the expected statistics for a binormal distribution

unction. It is specified by R o = μR (t = 0) , Re = 20 , and p o /p ∞ 

=
 . 9 , with initial conditions μR = 1 , μ ˙ R 

= 0 , σ 2 
R 

= 0 . 01 2 R o , σ 2 
˙ R 

=
 . 01 , and ρ

R ̇ R 
= 0 , though the conclusions are insensitive to these

hoices. The relative metric 

(∗) ≡ ‖ ∗MC − ∗PDF ‖ 2 

‖ ∗MC ‖ ∞ 

(14) 

uantifies the error. Subscripts MC and PDF refer to the Monte

arlo and PDF-based models, respectively, and ‖ ∗‖ s is the L s norm.
Fig. 1 (a) shows the low-order moment errors ε over three pe-

iods of the mean bubble dynamics. They are small and decay with

ncreasing N MC , consistent with the expected Monte Carlo sampling

rror for all moments, validating the linear model above. Fig. 1 (b)

hows the low-order moment evolution. The means μ∗ have the

ame dynamics as a damped harmonic oscillator and the variances

∗ grow and decay out of phase. A covariance ρ
R ̇ R 

develops despite

he linear dynamics and initially independently distributed random

ariables ρ
R ̇ R 

(t = 0) = 0 . Thus, representing the linear bubble pop-

lation statistics requires a random variable covariance parame-

er. Indeed, it has been shown that anisotropic Gaussian closures

which include this parameter) are more accurate than isotropic

nes for particle-laden flows ( Vié et al., 2015; Kong et al., 2017;

asbaoui et al., 2019 ) 

.2. R o -polydisperse populations 

A trivariate anisotropic normal distribution (following (12) ) is

sed to predict linear, polydisperse bubble dynamics. In (12) , � x =
 R, ˙ R , R o } , �

 μ = { μR , μ ˙ R 
, μR o } , and 

�
 μ′ ⇔ 

�
 θ follows from (13) with

he additional rows: 

→ 

θ = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

μR o 

σ 2 
R o 

ρRR o 

ρ ˙ R R o 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

μ′ 
001 

μ′ 
002 − μ′ 2 

001 

μ′ 
101 − μ′ 

100 μ
′ 
001 √ 

μ′ 
200 − μ′ 2 

100 

√ 

μ′ 
002 − μ′ 2 

001 
μ′ 

011 − μ′ 
010 μ

′ 
001 √ 

μ′ 
020 − μ′ 2 

010 

√ 

μ′ 
002 − μ′ 2 

001 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

→ 

′ 
= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

μ′ 
001 

μ′ 
002 

μ′ 
101 

μ′ 
011 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

μR o 

μ2 
R o 

+ σ 2 
R o 

μR μR o + ρRR o σR σR o 

μ ˙ R μR o + ρ ˙ R R o 
σ ˙ R σR o 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. (15) 

he integrals of (8) are closed via assumption of Gaussian statistics

n the R o direction and evaluated via adaptive Gaussian quadra-

ure to within 10 −7 % relative error. This ensures that the ob-

erved errors are associated with either this closure or Monte Carlo

ampling. The system has the same parameterization as that of

ection 4.1 , with additional initial conditions μR o = μR , σR o = σR ,

˙ R R o 
= 0 , and ρRR o = 0 . 

Fig. 2 shows the error associated with a general polydisperse

ubble population when comparing to a Monte Carlo simulation of

arying sample sizes N MC . We again compute the errors over three

ycles of the mean bubble dynamics. Increasing N MC results in a

imilar error trend as that of the fully-closed monodisperse case of

ig. 1 (a). Thus, we expect that these errors are associated with fi-

ite Monte Carlo sampling and that this model can represent linear

olydisperse bubble dynamics at least up to this accuracy. 

. Prediction of nonlinear bubble dynamics 

Gaussian closure is not exact for nonlinear bubble dynamics.

his section characterizes the errors incurred by applying this clo-

ure. The bubbles evolve according to the Rayleigh–Plesset Eq.

1) with different pressure ratios p o / p ∞ 

. For small pressure ratios,

he bubbles collapse violently and oscillate nonlinearly, whereas as

he pressure ratio approaches unit, linear dynamics are recovered.

hus, the moments of such a bubble population match those of the

inear case when p o / p ∞ 

→ 1 and σ ˙ R 
→ 0 . 

The initial bubble populations are independently distributed

nd Gaussian with means μR = 1 and μ ˙ R 
= 0 and variances σ 2 

R 
=

 . 01 and σ 2 
˙ R 

= 0 . 05 . Monte Carlo simulations with N MC = 10 5 sam-

les serve as a surrogate for the exact solution throughout. We re-

trict our analysis to R o -monodisperse cases. However, as discussed
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Fig. 1. Linear bubble dynamics for an example case. (a) Validation error ε (see text) of the density function parameters � θ for varying Monte Carlo sample number N MC and 

(b)–(d) their temporal evolution. (b) shows μR − μR (t = 0) instead of μR to ease visualization. 

Fig. 2. Errors for linear, R o -polydisperse bubble population dynamics. 
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in Section 3 and shown in Section 4 , including R o polydispersity is

straightforward. 

5.1. Low-order moment prediction 

Computing the high-order moments associated with phase-

averaged bubbly flow models requires evaluating the low-order

(first- and second-order) moments. Fig. 3 shows these low-order

moments for an example case over 10 periods of the mean bub-

ble dynamics. For both the exact and PDF-based model the mo-

ments associated with population variance, μ′ 
02 and μ′ 

20 , grow

and decay significantly from period-to-period. The covariance mo-

ment μ′ 
11 oscillates between values near ± 1, indicating correla-

tion between the random variables. The exact moments damp from

period-to-period, whereas the moments of the PDF-based model

are approximately periodic and do not display this behavior. Thus,

for this low pressure-ratio case the PDF-based model cannot accu-

rately represent the actual statistics. 

Fig. 4 shows the model error for a range of pressure ratios.

The errors of all the low-order moments increases with decreas-

ing p o / p ∞ 

. The errors associated with the bubble velocity moments

μ′ 
0 ∗ are largest, which appears to result from the large variations

that these moments have for low pressure ratios. For pressure ra-

tios near unity the dynamics are approximately linear and the er-

rors are small. 

The normality of the evolving bubble dynamics quantifies the

validity (or lack thereof) of the Gaussian PDF used. Fig. 5 shows

two high-order moments associated with non-Gaussian statistics:
he maximum skewness (third standardized moment, γ 1 ) and ex-

ess kurtosis (fourth standardized moment, κ). We compute these

sing Monte Carlo simulations. For p o / p ∞ 

→ 1 the dynamics are

early linear and γ 1 and κ are both small (less than about unity),

s expected. Both skewness and kurtosis become large for smaller

 o / p ∞ 

. For example, κ ˙ R 
= 126 . 7 and γ

1 , ̇ R 
= 4 . 9 for p o /p ∞ 

= 0 . 1 . The

arge skewness results from slower bubble growth than collapse,

o bubbles on spend more time at large radius and small radial

elocity. Thus, the PDF-based model, when equipped with Gaus-

ian closure, cannot accurately predict the low-order moments for

mall pressure ratios. 

.2. Higher-order moment prediction for phase-averaged models 

For ensemble-averaged simulations, the moments required are

ot the usual means and variances, but instead are higher-order

unctions of the random variables. Following Bryngelson et al.

2019) , these are μ′ 
3(1 −γ )0 , μ

′ 
30 , μ

′ 
21 , and μ′ 

32 . Since P is a mul-

ivariate Gaussian the integer moments are expressed in terms of

he low-order moments as 

′ 
30 = 3 μ′ 

10 μ
′ 
20 − 2 μ′ 3 

10 , (16)

′ 
21 = μ′ 

01 μ
′ 
20 + 2 μ′ 

10 μ
′ 
11 − 2 μ′ 2 

10 μ
′ 
01 , (17)

′ 
32 = μ′ 3 

10 

(
6 μ′ 2 

01 − 2 μ′ 
02 

)
− 12 μ′ 2 

10 μ
′ 
01 μ

′ 
11 + 6 μ′ 

01 μ
′ 
20 μ

′ 
11 

+ μ′ 
10 

[
3 μ′ 

20 

(
μ′ 

02 − 2 μ′ 2 
01 

)
+ 6 μ′ 2 

11 

]
(18)

daptive Gaussian quadrature computes the non-integer moment
′ 
3(1 −γ )0 via (5) . 

Fig. 6 shows the relative model error of the phase-averaged

odel moments. Similar to Fig. 4 , the errors grow with decreasing

ressure ratio and the moments associated with the bubble radius

 have smaller errors, including the non-integer moment μ′ 
3(1 −γ )0 .

hese errors are large for small p o / p ∞ 

, and the highest-order mo-

ent μ′ 
32 has the largest error. However, they are comparable to

he errors observed for μ′ 
02 . 

. Model augmentation via LSTM recurrent neural networks 

The Gaussian-closure-based method performed well for mod-

st pressure ratios, but poorly for strong bubble dynamics because

f population skewness and kurtosis. Representing such high-order

tatistics with a more general density function P (e.g. one that sup-

orts variation in skewness and kurtosis via additional shape pa-

ameters) in the framework of Section 3 is challenging because the
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Fig. 3. Low-order bubble population moments (a)–(e) for example case p o /p ∞ = 0 . 3 using the PDF-based model (PDF) and Monte Carlo simulation (Exact). The second-order 

moments are normalized by their t = 0 values and t c is the nominal collapse time. 

Fig. 4. Model error ε for the low-order moments (a)–(c) over ten cycles of the mean bubble dynamics for varying p o / p ∞ . 

Fig. 5. (a) Maximum Pearson’s moment coefficient of skewness γ 1 and (b) excess kurtosis κ over ten cycles of the mean bubble motion for varying pressure ratio. 

Fig. 6. PDF-basd model error ε associated with specific distribution moments (a)–(d). 
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Fig. 7. Low-order bubble population moments (a)–(e) for example case p o /p ∞ = 0 . 3 using the PDF-based model (PDF), the neural-network-augmented model (ML), and 

Monte Carlo simulation (exact). The second-order moments are normalized by their t = 0 values and t c is the nominal collapse time. 
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transformation between the shape parameters and raw moments

can be underdetermined ( Akhiezer, 1965 ). Instead, we employ a

machine learning formulation to complement the Gaussian closure

method. This approach can effectively augment imperfect dynam-

ical systems (e.g. Wan et al., 2018 ). Here, it attempts to improve

prediction of both low-order moment evolution and high-order

moment evaluation. The machine learning component is an LSTM

RNN, which allows incorporation of memory effects in the result-

ing machine-learned equations. Thus, the moment system (19) has

non-time-local closures and is non-Markovian ( Wan and Sapsis,

2018 ) 

6.1. Low-order moment prediction 

Using the Gaussian closure of Section 3 as a starting point, a

machine-learned forcing term 

�
 f ML augments the low-order mo-

ment evolution (7) as 

∂ � μ′ 
∂t 

= 

�
 f ( � μ′ ) + 

�
 f ML ( � μ′ ) . (19)

A separate single-layer LSTM RNN (each with 32 time delays) de-

termines each component of this term. The Monte Carlo time his-

tory of � μ′ for cases p o /p ∞ 

= { 0 . 15 , 0 . 25 , . . . , 0 . 85 } trains the neural

networks and provide the first 32 time delays. 

Fig. 7 shows these low-order moments for the neural-network-

augmented model. Even for this relatively low pressure-ratio case,

the moments associated with machine learning approach are much

closer to the exact data than the PDF-based model alone. This in-

cluding the relative damping of all moments, which the PDF-based

model could not represent. 

Fig. 8 shows the error of the PDF-based model and its augmen-

tation via neural networks. The machine learning approach signifi-

cantly decreases the model error for all moments for p o / p ∞ 

� 0.5,

while the errors for larger pressure ratios only decrease modestly.

This results in 

˙ R moment errors of ε � 10 −2 (un-augmented er-

rors as large as ε = 0 . 2 ) and R moment errors of ε � 10 −3 (un-

augmented errors as large as ε = 0 . 1 ) for all pressure ratios. Specif-

ically, for p o /p ∞ 

= 0 . 2 the ML error is only 8% of the PDF error for

μ′ 
01 and 0.9% of it for μ′ 

02 . 

Note that for the lowest pressure ratio we consider, p o /p ∞ 

=
0 . 1 , including the f term associated with the Gaussian closure did

not improve our results. This is because this case has significant

non-Gaussian features. Thus, for this case we trained a neural net-

work on the data itself without f . 
.2. Higher-order moment prediction for phase-averaged models 

This section analyzes the higher-order moments of

ection 5.2 for the improved model predictions. Fig. 9 shows

he errors associated with these moments for the augmented

DF-based model. The PDF-based model errors (PDF) are also

hose of Fig. 6 and ML-augmented errors (ML+GC) follow from

ssuming a Gaussian PDF for the higher-order moments using

he low-order moments of Section 6.1 . We see that this approach

lone reduces the error from the PDF-only model for the μ′ 
30 

nd μ′ 
21 moments. The non-integer moment errors do not de-

rease significantly. This is because the primary error results from

on-Gaussian statistics, and so assuming Gaussianity for the other

oments precludes accurate prediction. 

An additional LSTM neural network with output � g ML is used to

educe these errors as 

�
 

′ 
ML = 

�
 μ′ 

HG ( � μ′ ) + 

�
 g ML ( � μ′ ) , (20)

here �
 μ′ 

HG is the column vector of high-order moments as ap-

roximated via Gaussian statistics following (16) –(18) and 

�
 μ′ 

ML are

he new predictions (labeled as ML+ML in Fig. 9 ). The low-order

oments �
 μ′ and the residual of the truth-value of the higher-

rder moments (computed via Monte Carlo data) and 

�
 μ′ 

HG train

his neural network. Fig. 9 shows these results (ML+ML) for veri-

cation (out-of-training-set) pressure ratios. This approach reduces

from the ML+GC and PDF results for the μ′ 
3(1 −γ )0 and μ′ 

32 mo-

ents and reduces it further from the ML+GC results for the other

oments. For example, for p o /p ∞ 

= 0 . 1 the ML+ML error is only

% of the PDF error for the μ′ 
32 moment ( ε = 0 . 005 ) and 20% of it

or μ′ 
3(1 −γ )0 ( ε = 0 . 004 ). 

. Discussion and outlook 

The PDF kernel of the integrals of (8) is not defined for ρ = 1 .

n practice this was only a problem for cases with ρ = 1 as an

he initial condition because the moment system did not generate

uch strong correlations otherwise. Still, evaluating the ρ(t = 0) =
 case will require an internal coordinate transformation, such as

hat of Glazunov and Zhang (2012) . Note that some QBMMs, like

QMOM, can representing perfect correlations without such trans-

ormations ( Yuan and Fox, 2011 ). 

We did not analyze the cost of evaluating the integrals

f (8) above. However, obtaining less than 1% relative error re-

uires only about 20 integrand evaluations when using adaptive

auss quadrature for the p o /p ∞ 

= 0 . 3 case of Section 5 at t = t c .
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Fig. 8. Model error ε for the low-order moments (a)–(c) for the PDF-based model (PDF) and ML-augmented PDF-based model (ML) at varying pressure ratio. 

Fig. 9. Model error ε associated with specific distribution moments (a)–(d) for the PDF-based model (PDF), the ML-augmented PDF-based model (ML+GC), and the ML- 

augmented PDF-based model, augmented with an additional LSTM RNN for these moments (ML+ML). 
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his is favorable because only five moments are evolved (for the

ases of Section 5 ) and additional degrees of freedom in high-order

nterface-capturing simulations are expensive ( Coralic and Colo-

ius, 2006 ). A full assessment of the cost of explicitly representing

dditional moments via QBMMs will be considered in future work.

Of course, there are other ways to evaluate these integrals. For

xample, interpolated look-up tables are an efficient treatment for

roblems of this type: molecular dynamic simulations often use

hese for particle-pair potentials ( Wolff and Rudd, 1999; Rapa-

ort, 2004 ) and associated integral quantities ( Stave et al., 1990 ),

hemical-reacting system simulations use them for reduced-order

hemistry ( Pope, 1997 ) and flame models ( Jha and Groth, 2012 ).

uch a method would be useful because many parts of the flow

elds are likely to see similar conditions at any instance in time.

nother route is accelerating their evaluation via neural networks.

ndeed, this has been used to evaluate integrals corresponding to

ombustion systems ( Blasco et al., 1998 ). 

Actual simulation environments have spatial inhomogeneities.

or QBMMs these can result in numerical instabilities and neg-

tive quadrature weights due to unrealizable moment represen-

ations ( Wright, 2007; Mazzei et al., 2010; 2012; Marchisio and

ox, 2013 ). This problem can be avoided by maintaining convex-

ty in the moment space, for which second-order QBMMs are now

vailable ( Passalacqua et al., 2020 ). For the PDF-based scheme pre-

ented here, this is maintained by ensuring positivity of the covari-

nce matrix �. The high-order interface-capturing schemes typi-

ally used for bubbly flow simulation do not guarantee this, and

o it must be enforced. 

. Conclusions 

A moment method for predicting the statistics of a population

f dilute, cavitating bubbles was presented. The moment equations
re closed via a Gaussian probability density function, and only re-

uire evolution of the first two moments. In order to correct for

rrors incurred in the closure, it is augmented by a recurrent neu-

al network. 

This data-driven representation was trained on Monte Carlo

ata to correct the low-order moments, substantially improving

redictions. For example, for low pressure ratio p o /p ∞ 

= 0 . 2 the

L-augmented model error was only 0.9% of the unaugmented

ethod for the μ′ 
02 moment, which had the largest error without

he neural network. 

The higher-order moments required to close phase-averaged

ubbly flow models cannot be predicted based on the (corrected)

ow-order moments. This is becuase they contain errors associated

ith non-Gaussian statistics. Using an additional neural network,

rained on only Monte Carlo and low-order moment data, predic-

ion of these high-order moments improved significantly. For ex-

mple, for the lowest pressure ratio case p o /p ∞ 

= 0 . 1 the error

as only 7% of the PDF error for the highest-order moment. 

These results suggest that RNN-augmented moment models can

fficiently evaluate the bubbly flow statistics required to close

hase-averaged models. Future work will implement this method

n a two-way coupled coupled bubbly-flow solver. This will in-

lude extension to time-dependent pressure forcing, proliferation

f a training database, and evaluation of model costs for R o -

olydisperse populations. 
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Appendix A. Moment evolution equations 

Eq. (8) is derived as 

∫ (
d P 

d t 
= 0 

)
R 

l ˙ R 

m R 

n 
o d x → (A.1)

∂ 

∂t 

∫ 
P R 

l ˙ R 

m R 

n 
o d x + 

∫ 
∂( ˙ R P ) 

∂R 

R 

l ˙ R 

m R 

n 
o d x + 

∫ 
∂( ̈R P ) 

∂ ˙ R 

R 

l ˙ R 

m R 

n 
o d x = 0 , 

(A.2)

∂μ′ 
lmn 

∂t 
+ 

∫ 
∂( ˙ R P R 

l ˙ R 

m R 

n 
o ) 

∂R 

d x −
∫ 

∂(R 

l ˙ R 

m R 

n 
o ) 

∂R 

˙ R P d x + 

∫ 
∂( ̈R P R 

l ˙ R 

m R 

n 
o ) 

∂ ˙ R 

d x −
∫ 

∂(R 

l ˙ R 

m R 

n 
o ) 

∂ ˙ R 

R̈ P d x = 0 , (A.3)

∂ μ′ 
lmn 

∂t 
− l μ′ 

l−1 ,m +1 ,n − m 

∫ 
R̈ R 

l ˙ R 

m −1 R 

n 
o P d x = 0 . (A.4)

Applying (6) to (A.1) results in (A.2) . Performing integration by

parts on the second and third integrals results in (A .3) . (A .4) fol-

lows from evaluation of the first and third integrals, application of

(5) , and evaluation of the derivative in the last integrand. This also

matches (8) . 
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