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Summary The rheological behavior of an elastic capsule suspension is studied in a model two-dimensional channel using detailed numerical
simulations. As the rest capsule membrane aspect ratio increases, the capsules become increasingly vulnerable to a buckling instability. This
buckling behavior is concomitant with a sudden increase in the effective viscosity and a near disappearance of any near-wall capsule-free
layer. The microstructure dynamics suggest elongated capsules make significant rotational contributions that disrupt organized flow, as
computed by their rotlet capsule-capsule interactions.

INTRODUCTION

Flowing elastic capsule suspensions are well-known to have complex properties and rheology. We considered fluid-filled
elastic membranes, which can be considered a model for both natural capsules like red blood cells, and artificial ones such as
those used for drug delivery. The adjustment of the relative surface area of the capsule membrane leads to expected transitions
in rest shape, from round, to biconcave, to elongated, and dog-bone-like. We examine how these shape changes contribute
to the complex flow of the confined suspension, whose properties are then quantified by an effective viscosity. In blood or
similar complex suspensions, when flowing in narrow confines on the cell scale, the effective viscosity is known to involve the
formation of cell-free regions near the vessel wall, thus special attention is afforded to the behavior of this layer for different
capsule shapes and its relation to the effective vicosity. This is carried out through the simulation of a two-dimensional
simulation model.

METHODS

The flow geometry is a narrow streamwise-periodic two-dimensional channel, for which we vary width W and mean flow
rate U . The capsule membranes are finite-deformation linear-elastic shells with finite-deformation bending (M ) and tension (T )
moduli; each of which contains an incompressible Newtonian fluid with viscosity µ matching that of the suspending fluid. The
membrane rest shape is parameterized via ξo = lo/2πro, where lo is the length of the membrane and πr2o the interior capsule
area. We consider several different ξo, varying from circular geometries with ξo = 1.0 to very elongated shapes with ξo = 3.0.
Figure 1 shows the flow of different capsule geometries at capillary number u∗ = µU/T = 1.0.

(a) ξo = 1 (b) ξo = 1.7 (c) ξo = 3.0

Figure 1: Flow visualizations of different ξo capsules as indicated flowing in the model channel.

Since the Reynolds number of cell-scale flow is small, inertia is neglected and the governing equations can be solved using
a boundary integral formulation.1 The computation of velocities is accelerated using a particle-mesh-Ewald scheme based on
periodic Greens’ functions, while channel walls impose a no-slip condition enforced by a penalty method.2 The membrane
positions x are then advected according to

dx
dt

= u(x), (1)

where u(x) are the velocities of the capsule collocation points x as computed by the boundary integral equation. To evaluate
elastic tractions on the fluid, derivatives are calculated using Fourier interpolants of the discrete collocation points representing
the capsule membranes. A second-order Runge–Kutta scheme numerically integrates (1).
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RESULTS

We see for the flowing capsules in figure 1, that the (a) circular ξo = 1.0 and (b) biconcave ξo = 1.7 cases only slightly
deform from their equilibrium configuration, while the (c) ξo = 3.0 case shows significant folding of some capsules. This
seemingly disrupts the otherwise orderly flow, and is considered subsequently as a buckling mechanism.
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Figure 2: (a) Effective viscosity µeff for varying equilibrium shapes ξo, and (b) corresponding capsule-free layer thickness h.

The effective Newtonian-equivalent viscosities of the suspensions for different area fractions Hc and ξo are shown in
figure 2 (a). Elongated capsules with ξo & 2.0 have an increasingly large effective viscosity. In blood, the effective viscosity
µeff is reduced through the formation of a cell-free layer. This is measured here as h in figure 2 (b), which decreases to near
zero, also for ξo & 2.0, presumably leading to the increase in µeff.
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Figure 3: Non-dimensional force F ∗ versus resting capsule aspect ratio lc. The straight lines are power-law fits.

We hypothesize that the capsules undergo a buckling transition. Figure 3 shows force F ∗ ≡ F/µUlo plotted against the
aspect ratio lc = l1/l2 of the corresponding at-rest capsules. This is compared for single capsules suspended in a Taylor–Green
stagnation point flow, in a simple homogeneous shear flow, and in the channel flow. All three show a scaling reminiscent of
Euler bucking though altered presumably due to the strong perturbation environment in the channel and the shell-like structure
of the capsules.
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