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Abstract

We compare volume- and ensemble-averaged bubbly flow models. Volume-averaging is a deterministic process for which
bubbles are represented in a Lagrangian framework as advected particles, each sampled from a distribution of equilibrium
bubble sizes. Ensemble-averaging instead uses mixture-averaged equations in an Eulerian reference frame for the associated
bubble properties, each represented by bins of the equilibrium distribution. In both cases, bubbles are modeled as spherical with
dynamics governed by the Keller-Miksis equation. Computationally, there are tradeoffs between these two approaches. Here, we
simulate an acoustically excited dilute bubble screen and compare the computational efficiency of the two approaches.

Introduction

We consider complex cavitating bubbly flows, where bub-
bles can oscillate, expand significantly, and collapse violently.
Notably, the multiphase bulk flow is sensitive to individual
bubble motion; the shockwaves emitting from a cavitation
event are often comparable to those in the bulk, and even just
a few bubbles are sufficient to modify larger-scale pressure
waves (Mettin and Lauterborn 2003). Such flows often occur
naturally, such as during mantis shrimp strikes (Bauer 2004),
and in applications, including shockwave lithotripsy (Cole-
man et al. 1987).

Unfortunately, analyzing bubbly flow is challenging pri-
marily due to the vast range of length scales involved, from
the radius of a bubble-nuclei to the size of bubble clouds
and turbulent structures. This makes fully resolved com-
puter simulations prohibitive. Instead, modeling is required
to represent the flow dynamics. The first models for bub-
bly flows provided theories for linear scattering (Foldy 1945)
and nonlinear oscillatory systems (Iordanskii 1960). Since
then, most models have been broadly classified as either en-
semble averaged- (Zhang and Prosperetti 1994) or volume
averaged (Commander and Prosperetti 1989). We focus on a
specific example of each model and assess their relative utility
and advantages.

Bubbly-flow models

In both cases, the mixture-averaged flow equations and bub-
bles are represented as sub-grid features interacting with the
flow. However, the bubbles are tracked and coupled to the lig-
uid phase differently. In volume-averaged models, the volume
of gas per-unit-volume of the mixture is obtained locally for
each computational cell by projecting the volume of bubbles

onto the grid. The disturbances induced by the bubbles on
the flow field is determined by evaluating the background
and bubble flow potentials individually (Fuster and Colonius
2011). The ensemble-averaged approach instead evaluates the
statistically-averaged mixture dynamics by assuming a large
number of isotropically scattered bubbles as disperse (Ando
et al. 2011).

Besides algorithmic differences, there are also important
differences in the fundamental assumptions. In the volume-
averaged case, for the mixture to be considered homogeneous
and wave structure to be resolved, the length scale of the
control volume must be larger than mean bubble spacing but
smaller than the mixture wavelength. Ensemble-averaged
models are not beholden to this assumption, though ultimately
the separation of scales is still assumed for model closure;
so long as this scale separation is obeyed, ensemble- and
volume-averaging are equivalent.Unlike the volume-averaged
approach, ensemble-averaged models assume there are no
interactions between bubbles, except through their effect on
the mixture-averaged flow. In the present study, we assume
that the bubbles are spherical, their number is conserved, and
they advect at the local liquid velocity, though in principle
these assumptions can be relaxed with appropriate model
extensions.

The continuum ensemble-averaged equations follow from
Zhang and Prosperetti (1994) . The mixture pressure p is a
linear combination of the liquid pressure and the phase inter-
actions. All mean bubble variables are sampled with respect
to an assumed known bubble size distribution. In addition to
the phase-averaged equations, the void fraction is also trans-
ported with source terms accounting for volume change. The
volume-averaged equations are instead cast in terms of the lig-
uid phase (Fuster and Colonius 2011). Each bubble is located
in space and tracked as a Lagrangian point (Maeda and Colo-



nius 2018). The continuous void fraction field is computed by
smearing the bubble volume with a Gaussian regularization
kernel. In both cases, the liquid pressure is modeled according
to a stiffened gas equation of state.

The mixture-averaged equations are closed by the bubble
dynamic equations. Bubble oscillations are forced by the far
field pressure and modeled by the Keller—Miksis equation.
The internal bubble pressure is tracked independently accord-
ing to Ando et al. (2011). Mass transfer of the bubble contents
follows the reduced model of Preston et al. (2007). This model
includes thermal effects, viscous and acoustic damping, and
phase change.

Numerical method

Our numerical scheme generally follows that of Coralic
and Colonius (2006). The models are written in a quasi-
conservation form. The spatial discretization is a finite-
volume grid and the flux variables are evaluated within each
cell-centered volume. We reconstruct the primitive variables
at the finite-volume-cell faces via a WENOS scheme and use
the HLLC Riemann solver to compute the fluxes. The time
derivative is computed using the 3rd-order TVD Runge—Kutta
algorithm.

Results

We elucidate model comparisons by computing the solution
to an acoustically excited dilute bubble screen in water. The
three-dimensional domain utilizes grid-stretching and non-
reflective boundaries to minimize edge effects. The bubble
screen occupies the central area of the domain and has uniform
mesh spacing. Initially, the bubbles have a radius of 10 um
and are randomly and homogeneously distributed in the screen
region. A one-way plane acoustic source at excites a single
cycle of a sinusoidal pressure wave towards the screen.
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Figure 1: Mixture pressure at the center of the bubble screen.
The acoustic pulse has frequency 300 kHz and am-
plitude 1 MPa and the bubble screen has void frac-
tion 4 x 1075 and length matching the wavelength
of the pulse.

Figure 1 shows the pressure response of the central bubbly
region. The models match qualitatively, though many instanta-
neous realizations of bubble distributions are required for the
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volume-averaged case to converge to the ensemble-averaged
and, thus, statistically-averaged dynamics.

Further analysis

Statistical and computational trade-offs are computed and
analyzed for the volume- and ensemble-averaged bubbly flow
models. The relative cost between polydisperse computation
and statistical convergence is analyzed and discussed.

Acknowledgments

The authors would like to thank Kevin Schmidmayer for fruit-
ful discussions. This work was supported in part by the Office
of Naval Research under grant N0014-17-1-2676.

References

K. Ando, T. Colonius, and C. E. Brennen. Numerical simula-
tion of shock propagation in a polydisperse bubbly liquid. Inz.
J. Mult. Flow, 37(6):596-608, 2011.

R. T. Bauer. Remarkable shrimps: adaptations and natural
history of the carideans, volume 7. University of Oklahoma
Press, 2004.

A.J. Coleman, J. E. Saunders, L.A. Crum, and M. Dyson.
Acoustic cavitation generated by an extracorporeal shockwave
lithotripter. Ultrasound Med. Biol., 13(2):69-76, 1987.

K. W. Commander and A. Prosperetti. Linear pressure waves
in bubbly liquids: Comparison between theory and experi-
ments. J. Acoustic. Soc. Am., 85(732), 1989.

V. Coralic and T. Colonius. Finite-volume WENO scheme
for viscous compressible multicomponent flow problems. J.
Comp. Phys., 219(2):715-732, 2006.

L. L. Foldy. The multiple scattering of waves. I. General the-
ory of isotropic scattering by randomly distributed scatterers.
Phys. Rev., 67(3—4):107-119, 1945.

D. Fuster and T. Colonius. Modelling bubble clusters in
compressible liquids. J. Fluid Mech., 688:352-389, 2011.

S. V. Tordanskii. On the equation of motion for a liquid
containing gas bubbles. Zh. Prikl. Mekh. Tekhn. Fiz., 3:102—
110, 1960.

K. Maeda and T. Colonius. Eulerian—Lagrangian method
for simulation of cloud cavitation. J. Comp. Phys., 371(15):
994-1017, 2018.

R. Mettin and W. Lauterborn. Secondary acoustic waves in a
polydisperse bubbly medium. J. Appl. Mech. Tech. Phys., 44
(1):17-26, 2003.

A. T. Preston, T. Colonius, and C. E. Brennen. A reduced-
order model of diffusion effects on the dynamics of bubbles.
Phys. Fluids, 19(123302), 2007.

D. Z. Zhang and A. Prosperetti. Ensemble phase-averaged
equations for bubbly flows. Phys. Fluids, 6(2956), 1994.



